
MVA Convex Optimization - Homework 3 November 25, 2015

Master M2 MVA 2015/2016 - Convex Optimization - Homework 3 :
The LASSO problem

By: Lilian Besson (lilian.besson at ens-cachan.fr).

Abstract:

• I implemented everything for the first two parts, and got good results for both the sub-gradient
and coordinate-descent methods. I tested for several values of �, �, Ú on randomly generated
LASSO problems and the obtained precision was satisfactory.

• I did the complete proof for part 1, and implemented everything, but failed to finish debugging
the centering step for the barrier method (it quickly becomes infeasible and diverges).

• For the optional part 3, I did the theoretical part almost entirely (two justifications are missing)
but did not have time to start the implementation.

Attached programs: The programs for this TP are included in the zip archive I sent, and are
regular Python programs. They require the usual scientific Python modules (numpy, matplotlib),
and for some comparison I used the the machine-learning module scikit-learn and the optimization
toolbox scipy.optimize.

Notations

In this homework, we are exposing different approaches to numerically solve the following optimization
problem, called LASSO1:

min
�

1

2
}�� ´ �}2

2 ` Ú}�}1.

The variable is � P R
� (� is the number of features), and the data are � “ p��

1 , . . . , ��
� q P R

�ˆ�

(the design matrix), and � “ p�1, . . . , ��q P R
� the real values associated to each data point �� (� is

the size of the sample). Ú ě 0 is the regularization parameter2.

1 Second order method for the dual problem

1.1 Dual problem of LASSO

In this first sub-section, we present the dual problem of LASSO, and give a complete proof.

Theorem 1. The dual problem of LASSO can be written in the form a general Quadratic Program:

minimize �� �� ` �� �

subject to �� ĺ �

in the variable3 � P R
�, and with a PSD matrix � (� ľ 0).

1 Which stands for Least Absolute Shrinkage and Selection Operators.
2 Note that λ “ 0 is allowed, it just makes LASSO equivalent to usual Least Squares, but the methods presented

here are less efficient that usual Least Squares methods.
3 Note the change of dimension, from d for the primal to n for the dual.

Master MVA – ENS Cachan 1 Lilian Besson, 2015

http://www.numpy.org
http://www.matplotlib.org
http://scikit-learn.org/
http://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize
https://bitbucket.org/lbesson/

MVA Convex Optimization - Homework 3 November 25, 2015

Proof. The primal problem is

min
�

1

2
}�� ´ �}2

2 ` Ú}�}1.

The first step is to add a dummy variable � “ �� ´ � into the �2-norm:

min
�,�

1

2
}�}2

2 ` Ú}�}1, subject to � “ �� ´ �.

Now this is a (convex) optimization problem with equality constraints, and we can write its
Lagragian Lp�, �, �q (� is the vector Lagrange multiplier associated with � “ �� ´ �):

Lp�, �, �q “
1

2
}�}2

2 ` Ú}�}1 ` �� p�� ´ � ´ �q.

As usual, we try to group the terms with � and � (optimization variables):

Lp�, �, �q “
´

Ú}�}1 ` �� ��
¯

`
´1

2
}�}2

2 ´ �� �
¯

´ p�� �q.

So from here, we derive the dual function �p�q “ inf
�,�

Lp�, �, �q by separating the two minimization

over � and �:

�p�q “
´

inf
�

Ú}�}1 ` �� ��
¯

`
´

inf
�

1

2
}�}2

2 ´ �� �
¯

´ p�� �q.

For the minimization over �, we use the conjugate function of the �1-norm, which is the dual norm
} ¨ }8. The inequality constraint of the QP appears:

inf
�

´

Ú}�}1 ` �� ��
¯

“ ´ sup
�

´

´ Ú}�}1 ´ �� ��
¯

“

$

&

%

0 if 0 ď }�� �}8 ď Ú

´8 otherwise

For the minimization over �, we use the conjugate function of the �2-norm squared. The quadratic
term of the QP appears:

inf
�

´1

2
}�}2

2 ´ �� �
¯

“ ´ sup
�

´

�� � ´
1

2
}�}2

2

¯

“ ´
1

2
�� �

Finally, reassembling all these terms, we have that:

�p�q “ ´
´1

2
�� �

¯

´ p�� �q subject to }�� �}8 ď Ú.

We can conclude by rewriting the maximization problem of �p�q as a minimization problem (QP):

• with4 a quadratic term �� �� “ 1

2
�� �, so let �

def

“ 1

2
I� is simply diagonal (so is indeed PSD),

• with a linear term �� �, so let �
def

“ �,

• and with 2� inequality constraints �� � ď Ú1� and p´�q� � ď Ú1�, so5 let � “ r�� ; ´�� s,
and let � “ Ú12� is a constant vector of size 2�.

And so the dual problem is min�

`

�� �� ` �� �
˘

subject to �� ĺ �, as wanted.

4 These expressions are exactly the one used in the lasso function, which compute Q,p,A,b,v0 from X,y in order to
use the barr_method function.

5
A is called the extended design matrix (X and ´X horizontally stacked).

Master MVA – ENS Cachan 2 Lilian Besson, 2015

https://bitbucket.org/lbesson/

MVA Convex Optimization - Homework 3 November 25, 2015

Note: To go from the dual solution �˚ to the primal solution �˚, we have to solve this linear
system:

� “ p�� �q
´1

p�� ´ ��q.

Remark that it looks very similar to the normal equations closed form solution to regular Least
Squares problem: ��� “ p�� �q

´1
p��q, we just add a term � (dual variable).

Also note that, as usual, the dimension of the problem variable changes, it goes from � P R
� to

� P R
� (and usually � ! �) so it’s a useful reduction of dimension.

1.2 Implementation of the barrier method to solve QP

In linesearch.py, we implemented6 Armijo’s backtracking line search, and a few utility functions to
check that � is PSD isPSD, and to check that �0 (resp. �0) is strictly feasible (resp. a valid starting
point): satisfyInEqConstraint (resp. isInDomain).

In second_order_method.py, we started by implementing Newton’s method7 in a general setting
with blackbox f, and gradientf for ∆� and hessianf for ∆2� , the function newton_method returns
x, x_seq, nbstep: the optimal solution �˚

� , the sequence of values, and the number of Newton steps.

For the Newton method, we have to inverse a linear system: p∆2�p�qqÓ “ ´∆�p�q.
Below is included the key part of our implementing of Newton’s method, showing what happens at
each time step:

1 # N e w t o n ’s m e t h o d loop

2 while lambdax_sq > 2* eps and nbstep < nbstepMax :

3 gradientfx = gradientf (x)

4 # We solve Hf (x) delta = - Df (x)

5 Hx = hessianf (x)

6 # 1. Solve the l i n e a r s y s t e m Hf (x) \ - Df (x)

7 delta = - la. lstsq (Hx , gradientfx)[0]

8 lambdax_sq = np.dot(gradientfx , -delta)

9 # 2. Line s e a r c h (b a c k t r a c k i n g line s e a r c h with A r m i j o rule)

10 t = line_search (f, x, delta , gradientfx , alpha , beta)

11 # 3. U p d a t e the point x

12 x += t * delta

13 x_seq . append (x.copy ()) # Add a point to our s e q u e n c e

14 nbstep += 1 # Just to be cautious , no i n f i n i t e loops

15 # End of the while loop

Then for centering_step, we use the Newton’s method on the QP function:

• ��p�q “ ��p�q ` ãp�q “ �
´

�� �� ` �� �
¯

` ãp�q (defined as f), with ãp�q “
ř

logp�� ´ ���q the

log-barrier function for inequality constraints ��� ď �� (representing �� ď Ú and �� ě Ú).

• This gives an exact formula for the gradient (defined as gradientf): ∆��p�q “ �
´

2��� ` �
¯

´
ř

�
1

�i�´�i
��,

6 All the given files are well commented and documented, and they should be clear to understand and work with if
needed, however they are kinda long.

7 Remark: I wrote that part a while ago (10 days before the DM3 was out, along with rank 1 methods and DFS and
BFGS), and I tested them on simple 1-D, 2-D and 10-D cost functions and they seemed to work well.

Master MVA – ENS Cachan 3 Lilian Besson, 2015

https://bitbucket.org/lbesson/

MVA Convex Optimization - Homework 3 November 25, 2015

• and for the Hessian (defined as hessianf): ∆2��p�q “ �� `
ř

�
1

p�i�´�iq2 �� ¨ ��
� .

This function returns v_seq, nbstep: the sequence of dual variables iterates (from �� to ��`1) and
the number of Newton steps (added).

Then we wrote barr_method thanks to the centering step. The initial value for the barrier method
parameter �p0q is not cleverly guessed, we chose �p0q “ 1 every time8.

Finally, in order to be able to solve a LASSO problem from the primal �, � data and not the dual
data �, �, �, �, we wrote a wrapper function lasso_barr_method, which uses what we computed in
the proof above to get the dual data from the primal data. It then call the barr_method. Note that
the barr_method also return a sequence of dual values �: v_seq, which is the concatenation of all
the sequences returned by internal Newton’s steps (which is why we observed in class an error plot
constant by parts, during each Newton’s steps the global objective does not change).

We are not sure about the starting value �0 though. The main issue I faced was to find a started
point �0 for barr_method. I should have spent more time on the phase one method but ran out of
time. From what I understood, choosing �0 “ 0 works, because �� “ 0 ă � for the LASSO dual,
indeed � “ rÚ, . . . , Ús of size 2� and Ú ą 0.

Note: we added two counters, one for counting the total number of inner steps (Newton steps),
and the number of outer step (centering), in order to check what we saw in class: a big Û leads to a
lot of inner steps and few outer steps, while a small Û leads to few inner steps but a lot of outer steps.

The requested experiments are done in the demo function demo_lasso.

1.3 Testing on randomly generated LASSO problems

To test our barrier method for the LASSO problem, we chosed to generate random matrices �

and observations � (and Ú “ 10 “ lmbda was asked). In order to be realistic and to be able to
check the correctness of the learned (primal) parameter �, I implemented a function random_X_y_w

(in the helpers.py file) where I chosed to generate a matrix � of integers (in r´10, 10s) and
a “true” � of integers (in r´20, 20s). Then we got �1 artificially sparse, by removing 2{3 of its
values, and finally the observations are produced as � “ ��1: only in this context it is meaningful
to try to learn �̂ » �1 (and because we started by generated �1 we can compare them). In the
experiments (see the second_order_method.txt output file for more details), we added one line
Estimation of the error: || w - our_w || = ... (estimating the distance between the “true”
w and the learned one). We worked with � “ 10, � “ 20, but the methods scaled to much bigger
dimensions (� “ 50, � “ 800 worked as well, just slower).

To plot the required graph, we wrote plot_dual_objectives(f, v_seq, name, n, d, mu, lmbda).
We should have plotted both the function values (p�p��qq�) and (dual) gap (p�‹ ´ �p��qq�).

To chose a good value for the barrier parameter Û, we compared the performance for different
values (Û “ 2, 15, 50, 100, keeping Ú “ 10). The basic idea is that if Û " 1, there will be a lot of inner
steps (Newton) and few outer steps (centering), but if Û ! 1�� » 1 it will be the opposite. My guess
was Û “ 15 for the best value.

Unfortunately, I failed to conclude the code for this part.
I literally spent hours trying to conclude and debug my centering steps for no result.
In practice the inequality constraints for the barrier (the log-barrier function ãp�q) become
unsatisfied very quickly, and as soon as it appeared, the next centering fail (it tries to minimize

8 The slides said that there is “several heuristics for choice of t(0)” but none what discussed except tp0q “ 1, and a
quick lookup on Internet didn’t help

Master MVA – ENS Cachan 4 Lilian Besson, 2015

https://bitbucket.org/lbesson/

MVA Convex Optimization - Homework 3 November 25, 2015

�� with initial value `8).
Please take some time to check on the submitted programs that I am not lying: I really implemented
every piece of the required functions, but something is just not working. Everything seems to
work, every piece is here, has been checked several times.

2 First order methods for the primal problem

In this section, we work on two methods that try to directly minimize the primal problem. In
high-dimension settings, when � ! �, the dual method should work better (because it minimize a cost
in a really smaller dimension �).

2.1 Sub-gradient

I implemented the sub-gradient descent on the primal LASSO problem, as a function subgrad(X,y,lmbda,eps).
To compute a sub-gradient at each step, I wrote subgrad_objective_from_data(X, y, lmbda),
which compute a sub-gradient �p�q P subgradp�qp�q with this piece of code, which implements that
formula9 (with a small tolerance tol “ 10´8 when comparing �� to 0):

�p�q “ �� p�� ´ �q `
ÿ

�i‰0

signp��q�� `
ÿ

�i‰0

Ñ��� for Ñ� P r´1, 1s any values

1 def subgrad_f (w):

2 """ S u b g r a d i e n t o r a c l e w - - > ONE s u b g r a d i e n t of f at w . """

3 r = np.dot(X, w) - y

4 non_zero_part = np.sign(w) * (np. abs (w) >= tol)

5 # For that part , we have the c h o i c e (r a n d o m signs r e a l l y works Ðâ

b e t t e r)

6 beta = (2 * np. random . randint (0, 2, np. shape (w)) - 1)

7 # We can also try r a n d o m _ v a l u e s in [-1 , 1]

8 # beta = np . r a n d o m . u n i f o r m (-1 , 1 , np . shape (w))

9 zero_part = beta * np. ones_like (w) * (np. abs (w) < tol)

10 r e t u r n np.dot(X.T, r) + lmbda * (non_zero_part + zero_part)

For the Ñ� values, I tried both random signs (P t´1, 1u) and random values (P r´1, 1s uniformly).
Performance appeared to not be modified, so I kept the simple model (random signs).

I also tried the 4 step-size strategies seen in class:

• constant step-size Ð� “ ℎ,

• constant step-length Ð� “ ℎ
}�k} (ie. normalized gradient descent),

• sigma step-size sequence (non-negative, square summable but not summable), starting with
value Ð0 “ 0.1 (sigma_step_size), for instance Ð� “ 0.1

{ � ` 1,

9 See [Nesterov], Ex.5 page 133 for the proof.

Master MVA – ENS Cachan 5 Lilian Besson, 2015

https://bitbucket.org/lbesson/

MVA Convex Optimization - Homework 3 November 25, 2015

• a non-summable diminishing10 positive step-size sequence (decreasing_step_size).

The only strategy which works was the constant step-size strategy. The other one diverged clearly
(the primal vector � become filled with nan very quickly). I tried to fix it, but ran out of time.
Even with a very small initial value (order of magnitude of �� to emulate the behavior of normalized
gradient descent), none of the 3 other strategies worked.

For the experiments (see the first_order_methods.txt output file for more details), , we used
the same kind of random �, � from part 1. But our implementation worked way better in this part,
so we could try with higher dimensions (up-to � “ 800 and � “ 200 it worked fine, also for � “ 800
but small � “ 5 or � “ 10).

For this constant step-length strategy, we plotted below the (primal) objective as a function of
iterations (p�, �p��qq�“1...�), see Figure 1:

Figure 1: Objectives �p��q and gap �‹ ´ �p��q for the Sub-Gradient method, � “ 20, � “ 200, Ú “ 15.

Another similar result, for different dimensions, is also plotted, see Figure 2. The primal gap is
less satisfactory that the one obtained for smaller � (we do not even obtain a gap of � “ 10´3), and I
think this is logical since the whole point of LASSO is to work well when � ! �.

Figure 2: Objectives �p��q and gap �‹ ´�p��q for the Sub-Gradient method, � “ 100, � “ 400, Ú “ 15.

We can be happy about these results, I guess. A comparison with coordinate-descent is done
below.

10 I did not tried with a sequence other than the 1

k`1
one.

Master MVA – ENS Cachan 6 Lilian Besson, 2015

https://bitbucket.org/lbesson/

MVA Convex Optimization - Homework 3 November 25, 2015

2.2 Coordinate descent gradient

I implemented the sub-gradient descent on the primal LASSO problem, as a function coord_descent(X,y,lmbda,eps)

For each step, we use onedimension_minimization to optimize the (primal) cost function according
to only one dimension, ie. by optimizing �� : � ÞÑ �p�1, . . . , ��´1, �, ��`1, . . . , ��q, with a cycle on the
coordinates � “ 1, . . . , � “ � (i = nbstep % d in Python), In order to be efficient and win some time
here, I first used a one-dimension minimizer from scipy.optimize (minimize_scalar).

Afterward I computed a closed form formula:

Residual: � “ ��
� ¨ p� ´ r�1, . . . , ��´1, 0, ��`1, ��sq

and �� Ð signp�q
maxp|�| ´ Ú, 0q

}��}2
2

.

1 # 2. I m p r o v e c u r r e n t point w_k +1 from w_k by c h a n g i n g only its i ^ thÐâ

c o o r d i n a t e

2 # C h e a t i n g : w [i] = o n e d i m e n s i o n _ m i n i m i z a t i o n (f , w , i , eps = eps , Ðâ

n b s t e p M a x = n b s t e p M a x)

3 # B e t t e r m e t h o d (c l o s e d form m i n i m i z e r) :

4 tmp = w.copy ()

5 tmp[i] = 0.

6 residual = np.dot(X[:, i], y - np.dot(X, tmp).T)

7 w[i] = np.sign(residual) * np.fmax(np. abs (residual) - lmbda , 0) / Ðâ

np.dot(X[:, i], X[:, i])

For the experiments, we used the same kind of random �, � as before, and the same dimensions
p�, �q were tried.

For this constant step-length strategy, we plotted below the (primal) objective as a function of
iterations (p�, �p��qq�“1...�), see Figure 3:

Figure 3: Objectives �p��q and gap �‹ ´ �p��q for the Coordinate Descent, � “ 20, � “ 200, Ú “ 15.

Another similar result, for different dimensions, is also plotted, see Figure 4. The primal gap is
less satisfactory that the one obtained for smaller � (we do not even obtain a gap of � “ 10´3), and I
think this is logical since the whole point of LASSO is to work well when � ! �.

Remark: I think something went wrong in the coordinate-descent, because in some examples it
appeared to converge in 4 steps or 17 steps (really weird when we try to learn each coordinate of a

Master MVA – ENS Cachan 7 Lilian Besson, 2015

https://bitbucket.org/lbesson/

MVA Convex Optimization - Homework 3 November 25, 2015

� “ 800 sized vector � one by one. . .). Again, the homework was very long and I had to conclude
without being able to understand this issue.

Figure 4: Objectives �p��q and gap �‹ ´ �p��q for the Coordinate Descent, � “ 100, � “ 400, Ú “ 15.

We can be quite happy of the results, this method converges in a small number of steps (about
140). And the dual gap becomes small enough (10´4 or 10´5).

Comparing sub-gradient and coordinate-descent methods I tried the final question, to
compare the two methods. In practice, in terms of iterations, coordinate-descent is clearly better (as
we can see with the number of iterations in the graphs above, about 5000 vs 140). In terms of CPU
time, coordinate-descent is also better.

Both methods succeed to obtain a gap of 10´3, but sub-gradient failed to be better than 10´3,
while the other worked for up-to 10´6. Aiming at 10´10 was just a dream, it didn’t work at all.

There is many more plots of sub-gradient and coordinate-descent methods, on various size of
problems (see the fig/ folder in the zip file I sent).

I also try to change Ú in this part, and I did not observe the required behavior: for both methods,
the sparsity of � did not seem to really be controled by the value of Ú. Some extra plots for other
values of Ú (“ 1, 50, 200) are also included.

3 Proximal methods for the primal problem

For this optional part, I am sorry and sad to not have been able to work on it enough.

Question 1

For LASSO (of any size), the “smooth” convex function �p�q is �p�q “ 1

2
}�� ´ �}2

2, which is indeed
convex and differentiable (so it’s smooth as excepted). As for its strong convexity, it obviously depend
on �: if � “ 0, the function is constant, hence not strongly convex.

I would want to say that � is strictly convex ô � is non-singular, but have no proof for this claim.
For � ! �, � cannot be non-singular anymore, and we loose the strong convexity.

However the smoothness always holds: If �p�q “ 1

2
}��´�}2

2, ∆�p�q “ ��, so }∆�p�q´∆�p�q} “
}�p� ´ �q} ď }�}��}� ´ �}p˚q where }�}�� is the matrix norm (operator norm induced induced by
} ¨ } on vectors). Then if �

def

“ }�}��, � is �-smooth from this computation p˚q (by definition). In

Master MVA – ENS Cachan 8 Lilian Besson, 2015

https://bitbucket.org/lbesson/

MVA Convex Optimization - Homework 3 November 25, 2015

practice, because }�} “ }�}2 the norm 2, the induced matrix norm is the Fröbenius norm (spectral
norm), usually also written }�}2.

Conclusion: �
def

“ }�}2 the spectral norm of � is a good smooth-parameter for � for the LASSO
problem.

Question 2

Because we assume ℎ to be convex (but maybe non-differentiable), the minimization problem defining
proxℎ,� is convex, and so have a solution (ie. the proximal operator is well defined).

For an indicator function of a convex set, C: Let ℎ “ 1C : ℎCp�q “ 0 if � P C, `8 otherwise.

So the argmin� p¨ ¨ ¨ ` ℎp�qq is only to be considered for � P C, and then �
2

argmin�PC }� ´ �}2
2 “

�
2

dist2p�, Cq2 the distance between � and the convex set.

Conclusion: For an indicator of a convex set C:

prox1C ,� p�q “
�

2
argmin

�
dist2p�, �q2.

Note that this distance might not be easy to compute in general, but it’s still easier than a general
proximal operator (for a general ℎ). If C is closed, dist2p�, Cq “ }� ´ ÞCp�q}2

2 and argmin� dist2p�, �q “
ÞCp�q for ÞC the projection operator onto C. So

prox1C ,� p�q “
�

2
ÞCp�q.

For ℎp�q “ }�}1 For the �1-norm, the argmin looks very similar to the one in LASSO, with � “ �,
� “ I� and � “ �, and with Ú “ 2

�
ą 0.

We use another characterization11 of the proximal operator:

� “ proxℎ,� p�q ô 0 P Ópℎp�q `
�

2
}� ´ �}2

2q ô 0 P Óℎp�q ` � p� ´ �q ô � P � ´
1

�
Óℎp�q.

The �-th coordinate of the set of sub-gradients (the differential) for } ¨ } was given above (part
2.1), and it’s Ópℎp�qq� “ Ó}�}� “ signp�q if �� ‰ 0, r´1, `1s if �� “ 0.

So with this other characterization of proxℎ,� p�q, and the specific form of Óℎp�q, coordinate-wise,
we can conclude.

Conclusion: in this case, the proximal operator will be the “soft-threshold” operator (seen in class
as the “shrinkage” operator):

prox}¨},� p�q� “ � maxp}��}{� ´ 1, 0q “ maxp|��| ´ �, 0q.

Question 3

The question should be understood: with � being fixed, for which values of � ą 0 is ��,� p�q an upper
bound on ãp�q (fixed value) for all �?

To answer it, let’s work by equivalence, by starting to developp these two terms:

@�, ��,� p�q ě ãp�q ô @�, ∆�p�q� p� ´ �q `
�

2
}� ´ �}2

2 ` ℎp�q ě ℎp�q

ô @�, p´∆�p�q� qp� ´ �q ď
�

2
}� ´ �}2

2 ` ℎp�q ´ ℎp�q

11 See here for a more detailed proof.

Master MVA – ENS Cachan 9 Lilian Besson, 2015

https://en.wikipedia.org/wiki/Proximal_gradient_methods_for_learning#Solving_for_proximity_operator
https://bitbucket.org/lbesson/

MVA Convex Optimization - Homework 3 November 25, 2015

I have no idea how to conclude, but my intuition is that choosing � “ � “ 1

�
is the best choice.

Then the iteration scheme ��`1 “ argmin� ��t,� p�q becomes:

��`1 “ proxℎ,� p�� ´ �∆�p��qq.

• For ℎ “ 0, ��,� “ �p�q ` p∆�p�qq� p� ´ �q will give the iteration scheme of the usual gradient

descent on � : ��`1 “ �� ´ Ó�∆�p��q (with a step-size Ó�, constant equal to �).

• For ℎ “ 1C, similarly, based on the form of the proximal operator (computed above as the
projection onto C), the proximal iteration scheme will give the iteration scheme of the usual
projected gradient descent12:

��`1 “ ÞCp�� ´ Ó�∆�p��qq.

Question 4 and 6

I really did not have the time to implement or work on this part, sorry.

Question 5

We just have to observe that �‹ is an minimizer of the initial problem min� ãp�q “ �p�q ` ℎp�q if
and only if �‹ “ prox�,ℎp�‹ ´ �∆� p�‹qq. So �‹ is a fixed-point of a certain operator Ψ, namely
� ÞÑ prox�,ℎp� ´ �∆� p�qq.

And in fact, the proximal iteration scheme derived in question 3 is exactly a fixed point iteration
procedure: �0 P Ω, ��`1 Ð Ψp��q. We do not know from which �0 it starts, but if the proximal operator
is proven to be contractant, the iteration scheme will converge (quadratically) from any starting point.

I have no idea how we could prove the contraction property for Ψ though.

Conclusion

The last homework was interesting, thanks, but it was very lengthy and quite time consuming,
so many points were left unconcluded (or untouched for the end of optional part 3).

References

• Course and slides by Alexandre D’Aspremont: Newton’s method with equality constraints (pages
19 and 41), Barrier methods (page 13), First Order methods part 1 and part 2.

• Wolfe conditions (on Wikipedia) for the Armijo rule.

12 Which can be solved with Uzawa’s method for simple convex domains.

Master MVA – ENS Cachan 10 Lilian Besson, 2015

http://www.di.ens.fr/~aspremon/OptConvexeM2.html
http://www.di.ens.fr/~aspremon/PDF/MVA/UnconstrainedEquality.pdf
http://www.di.ens.fr/~aspremon/PDF/MVA/UnconstrainedEquality.pdf
http://www.di.ens.fr/~aspremon/PDF/MVA/BarrierMethod.pdf#page=13
http://www.di.ens.fr/~aspremon/PDF/MVA/FirstOrderMethods.pdf
http://www.di.ens.fr/~aspremon/PDF/MVA/FirstOrderMethodsPartTwo.pdf
https://en.wikipedia.org/wiki/Wolfe_conditions#Armijo_rule_and_curvature
https://bitbucket.org/lbesson/

	Abstract:
	Attached programs:
	Second order method for the dual problem
	Dual problem of LASSO
	Implementation of the barrier method to solve QP
	Testing on randomly generated LASSO problems

	First order methods for the primal problem
	Sub-gradient
	Coordinate descent gradient
	Comparing sub-gradient and coordinate-descent methods

	Proximal methods for the primal problem
	For an indicator function of a convex set, C:
	For h(x) = "0A7DC0F x"0A7DC0F 1

