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Presentation Problematic

Problematic

Goal: A
loomoon

𝑚ˆ𝑛

« B
loomoon

𝑚ˆ𝑘

ˆ C
loomoon

𝑘ˆ𝑛

(1)

Issue to solve
Traditional “low rank” approximation algorithms, such as the
QR decomposition and SVD, can be not adapted to large or
inaccurate matrices.

ùñ need for a framework to solve these kinds of problems.
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Presentation Two stages approximation framework

Two stages approximation framework

Input: Matrix 𝐴 PM𝑚,𝑛pKq.

“Two stages” approximation framework

Stage 1: Compute an orthonormal low-rank basis Q such that,

A « QQ‹A,

Stage 2: Compute the matrix factorizationa on B def
“ Q‹A.

aExample: SVD, QR, etc.

Adding randomization in Stage 1 will permit to span the range
of 𝐴 more efficiently, when its structure is known.
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Presentation Problem formulation

Two similar problems

The fixed precision problem

Given A and a tolerance 𝜀 ą 0, find Q such that:

‖A´QQ‹A‖ ď 𝜀.

The fixed rank problem

Given A and rank 𝑘 P N, find B such that:

‖A´B‖ « min
𝑟𝑎𝑛𝑘pXqď𝑘

‖A´X‖.
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Algorithms Prototype algorithm and questions

Prototype stage 1 algorithm

Chose 𝑝 ą 0 an oversampling parameter, and let 𝑘
def
“ rankpAq.

Stage 1 – “Proto-Algorithm”

1. Draw an 𝑛ˆ p𝑘 ` 𝑝q random matrix Ω, (Column selection)
2. Form the matrix Y def

“ AΩ,
3. Construct a matrix Q, whose columns form an orthonormal
basis for the range of Y.

Questions:

– how to draw Ω ? e.g. Gaussian, SRFT
– how to find the rank 𝑘 ? Ñ adaptive algorithm (cf. report)
– how to chose the oversampling parameter 𝑝 ?
– how to construct Q ? Ñ QR decomposition
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Algorithms Algorithms for the stage 1

2nd algorithm: Randomized Range Finder

Stage 1 – Randomized Range Finder algorithm

1. Draw an 𝑛ˆ p𝑘 ` 𝑝q standard Gaussian random matrix Ω,
2. Form the 𝑚ˆ p𝑘 ` 𝑝qmatrix Y def

“ AΩ,
3. Construct Q from Y’s QR factorization.

About 𝑝 ? [Tropp, 2014]

Unknown oversampling parameter 𝑝 ą 0 should depend on: the
matrix dimensions 𝑚, 𝑛, and the decrease of the ordered singular
spectrum.

E.g. for Gaussian matrices A, 𝑝 between 5 or 10 yields good results.
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Algorithms Algorithms for the stage 1

2nd algorithm: Randomized Range Finder

Stage 1 – Randomized Range Finder algorithm

1. Draw an 𝑛ˆ p𝑘 ` 𝑝q standard Gaussian random matrix Ω,
2. Form the 𝑚ˆ p𝑘 ` 𝑝qmatrix Y def

“ AΩ,
3. Construct Q from Y’s QR factorization.

Complexity: (i.e. number of “flops”)

About 𝑛ˆ p𝑘 ` 𝑝q ˆ 𝑇rand ` p𝑘 ` 𝑝q ˆ 𝑇mult `𝑚ˆ p𝑘 ` 𝑝q2.
“ 𝑂p𝑚𝑛p𝑘 ` 𝑝qq.

And: Works well for A with fast-decaying singular spectrum.
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Algorithms Algorithms for the stage 1

3rd algorithm: Randomized Power Iteration

– Issue: what if A’s singular spectrum is not fast-decaying?
[Tropp, 2014, p.41]

ãÑ Idea: reduce weights on the small singular values 𝜎𝑗pAq.
– Trick: instead of A “ A0, work on A𝑞

def
“ pAA‹q

𝑞 A.

Stage 1 – Randomized “Power Iteration” algorithm

1. Draw an 𝑛ˆ p𝑘 ` 𝑝q standard Gaussian random matrix Ω,
2. Form Y𝑞

def
“ pAA‹

q𝑞AΩ, via alternative application of A and A‹

3. Construct Q “ Q𝑞 from Y𝑞’s QR factorization.

In practice: 𝑞 “ 3, 4 works well.
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Algorithms Algorithms for the stage 1

4th algorithm: Fast Randomized Range Finder

– Issue: Gaussian matrices are not adapted for dense or
structured matrices. [Tropp, 2014, p.63]

ãÑ Idea: use Fast Fourier Transform (FFT) to bring structure.
– Trick: choose a structured random matrix Ω (SRFT).

Stage 1 – Fast Randomized Range Finder algorithm

1. Draw an 𝑛ˆ p𝑘 ` 𝑝q SRFT test matrix Ω,
2. Form Y def

“ AΩ,
3. Construct Q from Y’s QR factorization.
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Algorithms Algorithms for the stage 1

4th algorithm: Fast Randomized Range Finder

Stage 1 – Fast Randomized Range Finder algorithm

1. Draw an 𝑛ˆ p𝑘 ` 𝑝q SRFT test matrix Ω,
2. Form Y def

“ AΩ,
3. Construct Q from Y’s QR factorization.

A sub-sampled random Fourier transform (SRFT) is:

Ω “

c

𝑛

𝑙
ˆDˆ ℱ ˆR.

Where D is a 𝑛ˆ 𝑛 random diagonal Rademacher matrix,
ℱ is the 𝑛ˆ 𝑛 unitary discrete Fourier transform, and
R is an 𝑛ˆ p𝑘 ` 𝑝qmatrix whose columns are drawn from I𝑛.
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Algorithms Algorithm for the stage 2

One algorithm for stage 2: Direct SVD

Stage 2 – Direct SVD algorithm

Input: A, and Q from stage 1.
1. Form the matrix B def

“ Q‹A,
2. Compute the SVD of the matrix B “ rUΣV‹, (Full or truncated)
3. Form the orthonormal matrix U def

“ QŨ.

Note: QR decomposition can also be used.
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Theoretical analysis for error bounds First error bound

Bounds using the singular spectrum tail

Decompose A’s SVD like:
$

’

&

’

%

A “ U

˜

Σ1 0
0 Σ2

¸˜

𝑉 ‹1
𝑉 ‹2

¸

,

Ω1 “ 𝑉 ‹1 Ω and Ω2 “ 𝑉 ‹2 Ω.

Theorem 1 Error bound for the Proto-Algorithm

Assume that Ω1 has full row rank. The spectral norm error satisfies:

}A´QQ‹A}2 “ }p𝐼 ´ 𝑃YqA}2 ď }Σ2}
2
` }Σ2Ω2Ω:1}

2
.

With Y def
“ AΩ, if 𝑃Y is the orthonormal projector of same range that Y’s,

then }A´QQ‹A} “ }p𝐼 ´ 𝑃YqA}.
Ref. [Tropp, 2014, slide 53] and [Halko et al., 2011, theorem 9.1].
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Theoretical analysis for error bounds Second error bound

Randomized Range Finder

Theorem 2 Error bound for the Randomized Range Finder

Let 𝑘, 𝑝 ě 2 and 𝑘 ` 𝑝 ď minp𝑚, 𝑛q, then for the Fröbenius norm:

E
”

}p𝐼 ´ 𝑃YqA}𝐹
ı

ď

ˆ

1` 𝑘

𝑝´ 1

˙1{2
˜

ÿ

𝑗ą𝑘

𝜎2
𝑗 pAq

¸1{2

.

And for the spectral norm:

E
”

}p𝐼 ´ 𝑃YqA}
ı

ď

ˆ

1` 𝑘

𝑝´ 1

˙

𝜎𝑘`1pAq `
e
?

𝑘 ` 𝑝

𝑝

˜

ÿ

𝑗ą𝑘

𝜎2
𝑗 pAq

¸1{2

Both depend on A’s singular spectrum tail }Σ2}.
Ref. [Tropp, 2014, slide 59], [Halko et al., 2011, theorem 9.2].
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Numerical experiments First experiment (cf. the report)

A first simple experiment

Quick overview of experiment 1

– Generate a dense random Gaussian matrix A of size 500ˆ 500,
– Make it 𝑠-sparse, with a small 𝑠 “ 30,
– Compute its singular spectrum directly, with exact SVD,
– Then compare with each stage 1 algorithm (and DirectSVD for the

stage 2), on their norm errors }𝐴´ 𝑈𝑖Σ𝑖𝑉
‹

𝑖 }, and on their singular
spectra. 𝜎𝑖

𝑗 .

ùñ Each algorithm seemed to work as expected/predicted.
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Numerical experiments Second experiment (cf. the report)

An image processing application

Comparison of 3 stage-A algorithms, decay of the first 100 singular values.

– The Random Range Finder (blue) runs for 7 sec.
– The Random Power Iteration (green) runs for 12 sec (𝑞 “ 4).
– The Fast Random Range Finder (red) runs for 10 sec.
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Conclusion Technical conclusion

Quick sum-up

I studied. . .

– Classical matrix factorization algorithm, (QR, SVD)
– Limitations of the classical framework, (e.g. are linear in 𝑘)

– The “two stages” framework for matrix factorization.
Mainly from [Halko et al., 2011]
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Conclusion Technical conclusion

Quick sum-up

We saw how to. . .

– Use randomization in stage 1, to efficiently capture A’s
range,

– Use several algorithm, for different structure of A,

– And then use the classical QR / SVD for stage 2.
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Conclusion Technical conclusion

Quick sum-up

Experimentally, I. . .

– Implemented all these algorithms in Octave/MATLAB,
– Designed a first very simple experiment,
– Reproduced a less trivial one on a (relatively) large sparse

matrix (from image processing),

– And both experiments confirmed the theory!
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Conclusion Thank you!

Thank you!

Thank you for your attention.

. . . and thanks for the course!
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Conclusion Questions?

Questions ?
Want to know more?
ãÑ Explore the references, or read the project report,
ãÑ And e-mail me if needed lilian.besson[at]ens-cachan.fr.

Main references
– J. Tropp (2014), “Finding Structure with Randomness”, tutorial slides

[Tropp, 2014].
– N. Halko, P.-G. Martinsson and J. Tropp (2011), “Finding Structure

with Randomness: Probabilistic Algorithms for Constructing
approximate Matrix Decompositions”, longer article
[Halko et al., 2011].

– Z. Zhang (2015), “Randomized Numerical Linear Algebra (RNLA):
review and progresses”, tutorial slides [Zhang, 2015].
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Appendix

Appendix

Outline of the appendix

– More references given below,
– Code and raw results from some experiments:
ÝÑ http://lbo.k.vu/pcs2016.

– MIT Licensed.
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Appendix More references?

More references I

Main reference
The main reference is the work of N. Halko, P.-G. Martinsson and
J. Tropp, in 2011, presented in “Finding Structure with Randomness:
Probabilistic Algorithms for Constructing approximate Matrix
Decompositions” [Halko et al., 2011, Tropp, 2014].

Grivet, J.-P. and Ribot, M. (DL 2013, cop. 2013).
Méthodes numériques appliquées pour le scientifique et l’ingénieur (in
French).
Grenoble Sciences. EDP sciences, Les Ulis, 2nd edition.
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Appendix More references?

More references II

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011).
Finding Structure with Randomness: Probabilistic algorithms for
constructing Approximate Matrix Decompositions.
SIAM review, 53(2):217–288.

Tropp, J. A. (2012).
User-friendly tools for Random Matrices.
Neural Information Processing Systems (NIPS), Stateline.

Tropp, J. A. (2014).
Finding Structure with Randomness.
Tutorial slides, http://users.cms.caltech.edu/~jtropp/
slides/Tro14-Finding-Structure-ICML.pdf.
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Appendix More references?

More references III

Zhang, Z. (2015).
Randomized Numerical Linear Algebra (RNLA): review and
progresses.
Tutorial slides,
http://bcmi.sjtu.edu.cn/~zhzhang/papers/rnla.pdf.
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Appendix MIT Licensed

Open-Source Licensed

License?
These slides and the reporta are open-sourced under the terms of
the MIT License (see lbesson.mit-license.org).

Copyright 2015–2016, © Lilian Besson.
aAnd the additional resources – including code, images, etc.
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