Finding Structure with Randomness <u>Probabilistic Algorithms for Approximate Matrix Decompositions</u>

Lilian Besson

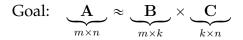
École Normale Supérieure de Cachan (Master MVA)

February 1st, 2016

Everything (slides, report, programs) is on http://lbo.k.vu/pcs2016. If needed: lilian.besson[at]ens-cachan.fr. **Grade:** I got 19/20 for my project.

Ranked 1st amongst 36 students who passed the course (average 14.19/20), 57 were registered.

Problematic



Issue to solve

Traditional "low rank" approximation algorithms, such as the **QR** decomposition and **SVD**, can be not adapted to large or inaccurate matrices.

 \implies need for a framework to solve these kinds of problems.

Two stages approximation framework

Input: Matrix $A \in \mathbb{M}_{m,n}(\mathbb{K})$.

"Two stages" approximation framework

Stage 1: Compute an orthonormal low-rank basis Q such that,

 $\mathbf{A} \approx \mathbf{Q} \mathbf{Q}^{\star} \mathbf{A},$

Stage 2: Compute the matrix factorization^{*a*} on $\mathbf{B} \stackrel{\text{def}}{=} \mathbf{Q}^* \mathbf{A}$.

^{*a*}Example: SVD, QR, etc.

Adding randomization in **Stage 1** will permit to span the range of *A* more efficiently, when its structure is known.

Two similar problems

The fixed **precision** problem

Given **A** and a tolerance $\varepsilon > 0$, find **Q** such that:

 $\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^{\star}\mathbf{A}\| \leq \varepsilon.$

The fixed rank problem

Given **A** and rank $k \in \mathbb{N}$, find **B** such that:

$$\|\mathbf{A} - \mathbf{B}\| \approx \min_{rank(\mathbf{X}) \leq k} \|\mathbf{A} - \mathbf{X}\|.$$

Chose p > 0 an **oversampling** parameter, and let $k \stackrel{\text{def}}{=} \operatorname{rank}(\mathbf{A})$.

Stage 1 – "**Proto-Algorithm**"

- 1. Draw an $n \times (k + p)$ random matrix Ω , (Column selection) 2. Form the matrix $\mathbf{Y} \stackrel{\text{\tiny def}}{=} \mathbf{A} \Omega$.
- 2. Form the matrix $\mathbf{Y} = \mathbf{A}\mathbf{Y}$,
- 3. Construct a matrix **Q**, whose columns form an orthonormal basis for the range of **Y**.

Questions:

Chose p > 0 an **oversampling** parameter, and let $k \stackrel{\text{def}}{=} \operatorname{rank}(\mathbf{A})$.

Stage 1 – "**Proto-Algorithm**"

1. Draw an $n \times (k + p)$ random matrix Ω_{k} (Column selection) 2. Form the matrix $\mathbf{Y} \stackrel{\text{\tiny def}}{=} \mathbf{A} \boldsymbol{\Omega}$.

3. Construct a matrix Q, whose columns form an orthonormal basis for the range of Y.

Ouestions:

- how to draw Ω ?

e.g. Gaussian, SRFT

Chose p > 0 an **oversampling** parameter, and let $k \stackrel{\text{def}}{=} \operatorname{rank}(\mathbf{A})$.

Stage 1 – "Proto-Algorithm"

- 1. Draw an $n \times (\mathbf{k} + p)$ random matrix Ω , (Column selection) 2. Form the matrix $\mathbf{Y} \stackrel{\text{def}}{=} \mathbf{A}\Omega$.
- 3. Construct a matrix **Q**, whose columns form an orthonormal basis for the range of **Y**.

Questions:

- how to draw Ω ? e.g. Gaussian, SRFT
- how to find the rank k? \rightarrow adaptive algorithm (cf. report)

Chose p > 0 an **oversampling** parameter, and let $k \stackrel{\text{def}}{=} \operatorname{rank}(\mathbf{A})$.

Stage 1 – "Proto-Algorithm"

- 1. Draw an $n \times (k + p)$ random matrix Ω , (Column selection) 2. Form the matrix $\mathbf{Y} \stackrel{\text{def}}{=} \mathbf{A}\Omega$.
- 3. Construct a matrix **Q**, whose columns form an orthonormal basis for the range of **Y**.

Questions:

- how to draw Ω ? e.g. Gaussian, SRFT
- how to find the rank k? \rightarrow adaptive algorithm (cf. report)
- how to chose the oversampling parameter *p* ?

Chose p > 0 an **oversampling** parameter, and let $k \stackrel{\text{def}}{=} \operatorname{rank}(\mathbf{A})$.

Stage 1 – "Proto-Algorithm"

- 1. Draw an $n \times (k + p)$ random matrix Ω , (Column selection) 2. Form the matrix $\mathbf{Y} \stackrel{\text{def}}{=} \mathbf{A}\Omega$.
- 3. Construct a matrix **Q**, whose columns form an orthonormal basis for the range of **Y**.

Questions:

- how to draw Ω ? e.g. Gaussian, SRFT
- how to find the rank k? \rightarrow adaptive algorithm (cf. report)
- how to chose the oversampling parameter *p* ?
- how to construct Q?

 \rightarrow QR decomposition

2nd algorithm: Randomized Range Finder

Stage 1 – Randomized Range Finder algorithm

- 1. Draw an $n \times (k + p)$ standard Gaussian random matrix Ω , 2. Form the $m \times (k + p)$ matrix $\mathbf{V}^{\text{def}} \mathbf{A} \mathbf{Q}$
- 2. Form the $m \times (k + p)$ matrix $\mathbf{Y} \stackrel{\text{def}}{=} \mathbf{A} \Omega$,
- 3. Construct **Q** from **Y**'s **QR** factorization.

About p?

[Tropp, 2014]

Unknown oversampling parameter p > 0 should depend on: the matrix dimensions m, n, and the decrease of the ordered singular spectrum.

E.g. for Gaussian matrices A, p between 5 or 10 yields good results.

2nd algorithm: Randomized Range Finder

Stage 1 – Randomized Range Finder algorithm

- 1. Draw an $n \times (k + p)$ standard Gaussian random matrix Ω , 2. Form the $m \times (k + p)$ matrix $\mathbf{Y} \stackrel{\text{def}}{=} \mathbf{A}\Omega$,
- 3. Construct Q from Y's QR factorization.

Complexity:

(*i.e.* number of "flops")

About $n \times (k+p) \times T_{\text{rand}} + (k+p) \times T_{\text{mult}} + m \times (k+p)^2$. = O(mn(k+p)).

And: Works well for A with fast-decaying singular spectrum.

3rd algorithm: Randomized Power Iteration

- Issue: what if A's singular spectrum is not fast-decaying? [Tropp, 2014, p.41]
- \hookrightarrow **Idea:** reduce weights on the small singular values $\sigma_j(\mathbf{A})$.
 - Trick: instead of $\mathbf{A} = \mathbf{A}_0$, work on $\mathbf{A}_q \stackrel{\text{def}}{=} (\mathbf{A}\mathbf{A}^{\star})^q \mathbf{A}$.

3rd algorithm: Randomized Power Iteration

- Issue: what if A's singular spectrum is not fast-decaying? [Tropp, 2014, p.41]
- \hookrightarrow **Idea:** reduce weights on the small singular values $\sigma_j(\mathbf{A})$.
 - Trick: instead of $\mathbf{A} = \mathbf{A}_0$, work on $\mathbf{A}_q \stackrel{\text{def}}{=} (\mathbf{A}\mathbf{A}^{\star})^q \mathbf{A}$.

Stage 1 – Randomized "Power Iteration" algorithm

1. Draw an $n \times (k + p)$ standard Gaussian random matrix Ω , 2. Form $\mathbf{Y}_q \stackrel{\text{def}}{=} (\mathbf{A}\mathbf{A}^*)^q \mathbf{A}\Omega$, via alternative application of \mathbf{A} and \mathbf{A}^* 3. Construct $\mathbf{Q} = \mathbf{Q}_q$ from \mathbf{Y}_q 's QR factorization.

In practice: q = 3, 4 works well.

4th algorithm: Fast Randomized Range Finder

- Issue: Gaussian matrices are not adapted for dense or structured matrices. [Tropp, 2014, p.63]
- \hookrightarrow Idea: use Fast Fourier Transform (FFT) to bring structure.
 - Trick: choose a *structured* random matrix Ω (SRFT).

4th algorithm: Fast Randomized Range Finder

- Issue: Gaussian matrices are not adapted for dense or structured matrices. [Tropp, 2014, p.63]
- \hookrightarrow Idea: use Fast Fourier Transform (FFT) to bring structure.
 - Trick: choose a *structured* random matrix Ω (SRFT).

Stage 1 – Fast Randomized Range Finder algorithm

- 1. Draw an $n \times (k + p)$ SRFT test matrix Ω ,
- 2. Form $\mathbf{Y} \stackrel{\text{\tiny def}}{=} \mathbf{A} \mathbf{\Omega}$,
- 3. Construct Q from Y's QR factorization.

4th algorithm: Fast Randomized Range Finder

A sub-sampled random Fourier transform (SRFT) is:

$$\mathbf{\Omega} = \sqrt{rac{n}{l}} imes \mathbf{D} imes \mathcal{F} imes \mathbf{R}.$$

Where **D** is **a** $n \times n$ random diagonal Rademacher matrix, \mathcal{F} is **the** $n \times n$ unitary discrete Fourier transform, and **R** is **an** $n \times (k + p)$ matrix whose columns are drawn from \mathbb{I}_n .

Algorithm for the stage 2

One algorithm for stage 2: Direct SVD

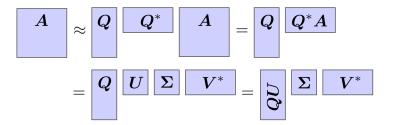
Stage 2 – Direct SVD algorithm

Input: A, and Q from stage 1.

- 1. Form the matrix $\mathbf{B} \stackrel{\text{\tiny def}}{=} \mathbf{Q}^* \mathbf{A}$,
- 2. Compute the SVD of the matrix $\mathbf{B} = \widetilde{\mathbf{U}} \Sigma \mathbf{V}^*$, (Figure 1).

(Full or truncated)

3. Form the orthonormal matrix $\mathbf{U} \stackrel{\text{\tiny def}}{=} \mathbf{Q} \tilde{\mathbf{U}}$.



Note: QR decomposition can also be used.

Bounds using the singular spectrum tail

Decompose A's SVD like:

$$\begin{cases} \mathbf{A} = \mathbf{U} \begin{pmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \Sigma_2 \end{pmatrix} \begin{pmatrix} V_1^{\star} \\ V_2^{\star} \end{pmatrix}, \\ \Omega_1 = V_1^{\star} \Omega \quad \text{and} \quad \Omega_2 = V_2^{\star} \Omega. \end{cases}$$

Bounds using the singular spectrum tail

Decompose A's SVD like:

$$\begin{cases} \mathbf{A} = \mathbf{U} \begin{pmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \Sigma_2 \end{pmatrix} \begin{pmatrix} V_1^{\star} \\ V_2^{\star} \end{pmatrix}, \\ \Omega_1 = V_1^{\star} \Omega \quad \text{and} \quad \Omega_2 = V_2^{\star} \Omega. \end{cases}$$

Theorem 1

Error bound for the **Proto-Algorithm**

Assume that Ω_1 has full row rank. The *spectral* norm error satisfies:

$$\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^{\star}\mathbf{A}\|^{2} = \|(I - P_{\mathbf{Y}})\mathbf{A}\|^{2} \leq \|\boldsymbol{\Sigma}_{2}\|^{2} + \|\boldsymbol{\Sigma}_{2}\Omega_{2}\Omega_{1}^{\dagger}\|^{2}.$$

With $\mathbf{Y} \stackrel{\text{def}}{=} \mathbf{A} \mathbf{\Omega}$, if $P_{\mathbf{Y}}$ is the orthonormal projector of same range that \mathbf{Y} 's, then $\|\mathbf{A} - \mathbf{Q} \mathbf{Q}^* \mathbf{A}\| = \|(I - P_{\mathbf{Y}})\mathbf{A}\|$.

Ref. [Tropp, 2014, slide 53] and [Halko et al., 2011, theorem 9.1].

Randomized Range Finder

Theorem 2

Error bound for the Randomized Range Finder

Let $k, p \ge 2$ and $k + p \le \min(m, n)$, then for the *Fröbenius* norm:

$$\mathbb{E}\Big[\|(I-P_{\mathbf{Y}})\mathbf{A}\|_{F}\Big] \leq \left(1+\frac{k}{p-1}\right)^{1/2} \left(\sum_{j>k} \sigma_{j}^{2}(\mathbf{A})\right)^{1/2}$$

And for the *spectral* norm:

$$\mathbb{E}\Big[\|(I-P_{\mathbf{Y}})\mathbf{A}\|\Big] \leq \left(1+\frac{k}{p-1}\right)\sigma_{k+1}(\mathbf{A}) + \frac{e\sqrt{k+p}}{p}\left(\sum_{j>k}\sigma_j^2(\mathbf{A})\right)^{1/2}$$

Both depend on **A**'s singular spectrum tail $\|\Sigma_2\|$.

Ref. [Tropp, 2014, slide 59], [Halko et al., 2011, theorem 9.2].

A first simple experiment

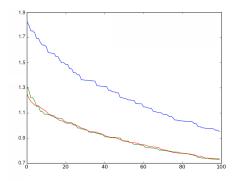
Quick overview of experiment 1

- Generate a dense random Gaussian matrix A of size 500×500 ,
- Make it *s*-sparse, with a small s = 30,
- Compute its singular spectrum directly, with exact SVD,
- Then compare with each stage 1 algorithm (and DirectSVD for the stage 2), on their norm errors $||A U_i \Sigma_i V_i^*||$, and on their singular spectra. $\tilde{\sigma}_j^i$.

 \implies Each algorithm seemed to work as expected/predicted.

(cf. the report)

An image processing application



Comparison of 3 stage-A algorithms, decay of the first 100 singular values.

- The Random Range Finder (blue) runs for 7 sec.
- The **Random Power Iteration** (green) runs for $12 \sec (q = 4)$.
- The Fast Random Range Finder (red) runs for 10 sec.

Lilian Besson (ENS Cachan)

Project Presentation - CS course

Quick sum-up

I studied...

- Classical matrix factorization algorithm,
- Limitations of the classical framework, (e.g. are linear in k)
- The "two stages" framework for matrix factorization.

Mainly from [Halko et al., 2011]

(OR, SVD)

Quick sum-up

We saw how to...

- Use randomization in stage 1, to efficiently capture A's range,
- Use several algorithm, for different structure of A,
- And then use the classical QR / SVD for stage 2.

Quick sum-up

Experimentally, I...

- Implemented all these algorithms in Octave/MATLAB,
- Designed a first very simple experiment,
- Reproduced a less trivial one on a (relatively) large sparse matrix (from image processing),
- And both experiments confirmed the theory!

Thank you!

Thank you for your attention.

... and thanks for the course!

Questions ?

Want to know more?

- \hookrightarrow Explore the references, or read the project report,
- \hookrightarrow And e-mail me if needed lilian.besson[at]ens-cachan.fr.

Main references

- J. Tropp (2014), "Finding Structure with Randomness", tutorial slides [Tropp, 2014].
- N. Halko, P.-G. Martinsson and J. Tropp (2011), "Finding Structure with Randomness: Probabilistic Algorithms for Constructing approximate Matrix Decompositions", longer article [Halko et al., 2011].
- Z. Zhang (2015), "Randomized Numerical Linear Algebra (RNLA): review and progresses", tutorial slides [Zhang, 2015].

Appendix

Outline of the appendix

- More references given below,
- Code and raw results from some experiments: $\rightarrow http://lbo.k.vu/pcs2016$.
- MIT Licensed.

More references I

Main reference

The main reference is the work of N. Halko, P.-G. Martinsson and J. Tropp, in 2011, presented in *"Finding Structure with Randomness: Probabilistic Algorithms for Constructing approximate Matrix Decompositions"* [Halko et al., 2011, Tropp, 2014].

More references II

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011). Finding Structure with Randomness: Probabilistic algorithms for constructing Approximate Matrix Decompositions. *SIAM review*, 53(2):217–288.

Tropp, J. A. (2012).
User-friendly tools for Random Matrices.
Neural Information Processing Systems (NIPS), Stateline.

Tropp, J. A. (2014).

Finding Structure with Randomness.

Tutorial slides, http://users.cms.caltech.edu/~jtropp/ slides/Tro14-Finding-Structure-ICML.pdf.

More references III

Zhang, Z. (2015).

Randomized Numerical Linear Algebra (RNLA): review and progresses. Tutorial slides, http://bcmi.sjtu.edu.cn/~zhzhang/papers/rnla.pdf.

Open-Source Licensed

License?

These slides and the report^{*a*} are open-sourced under the terms of the **MIT License** (see lbesson.mit-license.org).

Copyright 2015–2016, © Lilian Besson.

^{*a*}And the additional resources – including code, images, etc.