
Finding Structure with Randomness
Probabilistic Algorithms for Approximate Matrix Decompositions

Research Project Report – “Sparsity and Compressed Sensing” course

Lilian Besson*

Department of Mathematics
École Normale Supérieure de Cachan (France)

lilian.besson@ens-cachan.fr

Abstract

Matrix factorization is a powerful tool to achieve tasks efficiently in numerical lin-
ear algebra. A problem arises when we compute low-rank approximations for massive
matrices: we have to reduce the algorithms’ complexity in time to hope to be efficient.
A way to adapt these techniques for such computational environments is randomiza-
tion. This report presents a framework for these new techniques, mainly based on the
recent work by N. Halko, P.-G. Martinsson and J. Tropp presented in “Finding Structure
with Randomness: Probabilistic Algorithms for Constructing approximate Matrix Decompo-
sitions” [HMT11, Tro14]. The main intuition behind the various algorithms presented
herein is using random sampling to apprehend the action of the matrix in a “com-
pressed” subspace. We can apply then the classical methods on the resulting matrix –
the one acting on the “compressed” subspace – to obtain a low-rank approximation.
Another application that rises from this explanation is the fact that this method is thus
more robust addressing incomplete data sets that one can get in information sciences,
while other. The benefits of such methods will depend on the matrix.

We will decline the results for two main classes: dense matrices where the new com-
plexity is about �(�� log(�)), compared to �(���) for classical methods – � being
the numerical rank; sparse matrices, and in general, structured matrices. [HMT11] also
studied massive matrices that do not fit in fast memory (RAM) for which the access time
– which surpasses computation time – can be reduced to one pass, comparing to �(�)
passes, but due to space constraint we will not present it here.

A clean Octave implementation was developed, and we will present 2 experiments,
done on both dense and sparse matrices, in order to confirm the theoretical analysis.

*If needed, see on-line at http://lbo.k.vu/pcs2016 for an e-version of this report, as well as additional re-
sources (slides, code, figures, complete bibliography etc), open-sourced under the MIT License.

1

http://perso.crans.org/besson/
https://en.wikipedia.org/wiki/Numerical_linear_algebra
https://en.wikipedia.org/wiki/Numerical_linear_algebra
http://lbo.k.vu/pcs2016
http://lbesson.mit-license.org/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

Contents

1 Introduction 3
1.1 Presentation of the problem . 3
1.2 Randomized matrix approximation . 4
1.3 The two stages approach framework . 5

2 Algorithms for the two stages matrix approximation framework 6
2.1 Stage 1 algorithms . 6

2.1.1 Randomized Range Finder . 6
2.1.2 Adaptive Randomized Range Finder . 7
2.1.3 Randomized Power iteration . 7
2.1.4 Fast Randomized Range Finder . 8

2.2 Stage 2 algorithms . 10
2.2.1 From one factorization to another? . 10
2.2.2 Direct SVD . 10
2.2.3 Other stage 2 algorithms? . 11

3 Theoretical analysis 11
3.1 Preliminaries . 11
3.2 Error bounds . 13

3.2.1 Error bound for the Proto-Algorithm . 13
3.2.2 Error bounds for the range finder algorithm 13

3.3 Comments on the error bounds . 14

4 Implementation and numerical experiments 15
4.1 Quick overview of our implementation . 15
4.2 A first experiment . 15
4.3 Second experiment on a large sparse matrix . 15

5 Conclusion 17

A Appendix 18
A.1 Acknowledgments . 18
A.2 Personal feeling about the project . 18
A.3 References . 18

Project Advisor: Gabriel Peyré (CEREMADE, Université Paris-Dauphine)
Course: “Sparsity and Compressed Sensing”, by G. Peyré, in 2015–2016

Master 2 program: Mathématiques, Vision, Apprentissage (MVA) at ENS de Cachan.
Grade: I got 19⇑20 for my project.

Ranked 1st amongst 36 students who passed the course (average 14.19⇑20), 57 were registered.

Master MVA – ENS Cachan 2⇑19 Lilian Besson

https://gpeyre.github.io/
https://www.ceremade.dauphine.fr/
http://www.dauphine.fr/
https://gpeyre.github.io/teaching
https://gpeyre.github.io/
http://www.math.ens-cachan.fr/version-anglaise/academics/mva-master-degree-227777.kjsp
http://www.ens-cachan.fr/
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

Outline: In this report, we start by introducing the problem, and the main approach we stud-
ied, in section 1. Then different algorithms are presented in section 2, and each comes with a
short discussion about its complexity; followed in section 3 by some necessary preliminary re-
sults to a theoretical analysis for some algorithms (mainly proofs of deterministic or expected
error bounds). We will also detail in section 4 our implementation, and the numerical experi-
ments developed to confirm the theoretical results and apply the presented framework on dense
or sparse matrices. At the end, we conclude with a short sum-up in section 5, along with a list of
references, and links to additional on-line resources in appendix A.

1 Introduction

1.1 Presentation of the problem

Matrix factorization is frequently listed amongst the “10 most influential algorithms” of the 20st

century [Cip00, DS00, Giv01]. For instance, B. Cipra lists in 2000 3 algorithms related to matrix
factorization amongst his top 10 algorithms: Krylov subspace methods (3rd position), decom-
positional approach to matrix computations (4th position), and the QR algorithm (6th position)
[Cip00].

In fact, linear algebra computational techniques should be separated from its applications.
Ideally, one should focus only on one specialization. Matrix manipulators should develop frame-
works with algorithms to solve numerical linear algebra problems. The classical algorithms, dat-
ing back to the middle of the previous century0, are no longer adequate for some applications,
which are the result of the developments in computer hardware, information sciences and big
data.

About the new applications, we can cite modern data mining applications, inaccurate or miss-
ing data in information science, and new architectures involving, for instance, graphics process-
ing units (GPU). In fact, new data mining applications involve very large matrices that classical
methods cannot even hope to solve efficiently (e.g. Google page rank). Otherwise, in informa-
tion sciences, it goes without mentioning the fact that data is usually missing or inaccurate. In
such case, it seems misguided to spend too much of the highly expensive computational capacity
on inaccurate information. In addition, some data matrices are so big that they cannot be stored
in easy access memory1. Data access time surpasses thus the computational requirements while
classical algorithms are multi-pass.

Low-rank approximation

We will present herein a special case of matrix decomposition techniques: the approximation by

low-rank matrices. As we have seen before hand, matrix decomposition techniques are very

popular, and usually cited amongst the 10 most influential algorithms [Cip00, DS00, Giv01]. This

fact highlights the importance of low rank approximations, which includes the QR factorization

and the singular eigenvalue decomposition (SVD) [GR13]. These methods both expose the range

0[GR13] presents these algorithms with a historical perspective. For instance, the QR algorithm was developed
independently by J.G.F. Francis in the UK and V.N. Kublanovskaya in USSR in the years 1959–1963.

1An example is the Laplacian for a social network graph, as studied in Michal Valko’s MVA course in fall 2015

Master MVA – ENS Cachan 3⇑19 Lilian Besson

https://en.wikipedia.org/wiki/Krylov_subspace
https://
https://
https://en.wikipedia.org/wiki/QR_algorithm
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Low-rank_approximation
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Row_and_column_spaces#Column_space
https://en.wikipedia.org/wiki/QR_algorithm#References
https://en.wikipedia.org/wiki/Laplacian_matrix
http://researchers.lille.inria.fr/~valko/hp/
http://researchers.lille.inria.fr/~valko/hp/mva-ml-graphs.php
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

of the matrix. In general, we aim at decomposing a matrix2 A ∈M�,�(K) as a product:

A
︀

�×�

≈ B
︀

�×�

× C
︀
�×�

(1)

Where � is the numerical rank of the matrix (i.e. dimension of its image space). So when the
matrix A has a “low” rank, � ≪ min(�, �), we can store it and compute linear operations on it
quite efficiently thanks to equation (1). Indeed, storing A takes about �(��), while storing B, C

takes only3 �((� + �)�), and linear algebra computations depend on the matrices’ size.
Low rank approximation has many applications. The principal component analysis (PCA), in

statistics, for one, is nothing but a low rank approximation. They are also of use in parameter
estimation with least squares, as the design matrix may not be inverted. We use then the QR
decomposition to calculate the Moore-Penrose inverse [Alb72, Rak04, Cou08, GR13].

1.2 Randomized matrix approximation

Randomized algorithms provide simple and effective tools to perform matrix approximate fac-
torizations [CLRS09, chapter 5]. The randomized methods are faster and more robust and, with a
trade-off accuracy for speed, it yields results up to any precision (� > 0 hereafter).
In general, matrix approximation through randomization is done following the paradigm [Tro14]:

(i) Pre-processing: by computing the sampling probabilities,

(ii) Sampling: applying a function on the matrix, usually linear (as seen in the sparsity course),

(iii) Post-processing: by applying classical techniques of linear algebra on the samples.

We quickly list the 3 most common techniques:

• Sparsification: replace the matrix by a substitute that contains much less non-zero entries
(i.e. a sparser matrix). We can also quantize entries such that we obtain an approximate
matrix, e.g. the Spielman-Srivastava algorithm [SS08]. For instance, the resulting matrix
multiplication by a vector is less time consuming than multiplying the original matrix by a
vector.

• Dimension reduction: start from the fact that the matrix rows are dependent: they can be
embedded in a low dimension subspace without altering the geometric properties, based
on the Johnson-Lindenstrauss lemma [JL84].

• Column selection methods: select a small set of columns that describes most of the range
of the matrix. This method is based on the fact that [DMM08, part 3.1], [Zha15, slide 29]:

︁A −CC†A︁ ≤ ︂1 + �(� − �) ︁A −A(�)︁ (2)

The dagger C† denotes the pseudo-inverse, A(�) represents the best �-rank approximation of
A and C is a �-column sub-matrix of A. Although it is NP-hard (in the input size min(�, �),
[GJ79, problem MP4], proof by J. Murty in 1972) to choose the best � columns, there are
efficient (randomized or not) techniques, mainly based on the QR method [AM07, WLRT08].
We will focus on this last approach.

2In all this report, the only field we consider is K def

= C, and if not specified every scalar is complex.
3And obviously (m + n)k ≪mn as soon as k ≪min(m, n), hence the name “low rank”.

Master MVA – ENS Cachan 4⇑19 Lilian Besson

https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Moore\T1\textendash Penrose_pseudoinverse
https://gpeyre.github.io/teaching/
http://perso.crans.org/besson/publis/mva-2016/MVA_2015-16__Graphs_in_Machine_Learning__TP3__Lilian_Besson.en.pdf
https://en.wikipedia.org/wiki/Johnson\T1\textendash Lindenstrauss_lemma#cite_ref-2
https://en.wikipedia.org/wiki/Moore\T1\textendash Penrose_pseudoinverse
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

1.3 The two stages approach framework

The main idea in this framework is to capt the most of the action of the matrix: i.e. we want to
apply the matrix on a dimension-reduced space so as to obtain an approximation of the result
obtained in the full space. It is a dual to the dimension reduction technique. We then apply
the classical methods on the “reduced” matrix. In this framework, we are using then two stage
algorithms.

Formally, suppose that � ∈ N⋆ is the numerical rank of the � × � matrix A (the same notation
will be used hereafter). Let Q be the matrix representation of � orthonormal vectors (columns).
The “reduced” matrix is then B, simply written as: B

def= Q∗A. If the subspace generated by Q

captures the most of A’s action, we should then get: A ≈QQ∗A.
We can then describe briefly the two stages4 setting as follows:

Stage 1: First, (randomly) produce a � × � matrix Q such that:

A ≈QQ∗A. (3)

Stage 2: Then, apply classical techniques – such as QR and SVD – on the “reduced” matrix:

B =Q∗A. (4)

It is in stage 1 that the randomization intervenes. In fact, as stated previously, we will use the
column selection approach: we draw � random vectors to sweep over the range of A. Hopefully,
the resulting vectors will form an approximation of the range of the matrix we are A. We then
just apply an ortho-normalization (OR) technique – such as Gramm-Schmidt – to deduct Q. This
idea is not especially new [GR13, GE96].

The new idea presented here is from [HMT11], and is based on the fact that we could try to
sample “too much” vectors instead of exactly � vectors, i.e. � vectors with � > �. Let us try to
explain why. Suppose we drowned � vectors {æ�}1≤�≤�. We hope that these vectors being drawn
randomly are independent, and the resulting subspace does not intersect (non-trivially) with the
matrix’s kernel ker(A). We are the confident that the vectors �� will describe the range of A,
where:

�� def= Aæ(�), � = 1 . . . �. (5)

The problem is that when we approximate A the error we make shifts these vectors out from the
range of A. We thus have to oversample, i.e. to draw more æ�: {æ�}1≤�≤�. The algorithms presented
later all use the notation Ω

def= ︁æ�︁1≤�≤� and Y
def= ︁��︁1≤�≤�.

But another issue arises. All this time we considered that �
def= rank(A) = dim(range(A)) is

already set. The problem is that we do not know � in general, and in fact, we have to find �. We
reformulate then the “stage 1” equation (3):

︁A −QQ∗A︁ ≤ �. (6)

The numerical rank depends then on the aimed precision5: � = �(�).
To solve the problem, we will use the SVD. Let à� the �-th largest singular value of A (for

1 ≤ � ≤ min(�, �). A famous theorem, due to L. Mirsky (from 1969, see [WLRT08, lemma 3.1]),
can then be used to state:

min
range(X)≤�

︁A −X︁ = à�+1. (7)

4[HMT11] uses stages “A” and “B”, but I preferred to use “1” and “2”, as A and B are matrices here.
5And not the other way around, it is absurd to consider a target precision depending on the unknown rank!

Master MVA – ENS Cachan 5⇑19 Lilian Besson

https://en.wikipedia.org/wiki/Gram\T1\textendash Schmidt_process
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

One way to find the minimizer is to we choose X =QQ∗A, where Q are the � dominant (left)
singular vectors of A, and � is numerically determined by the fact that à�+1 ≤ � (this is a classical
result, see for example [GR13, section 10.6.2]).

Therefore, the fixed rank problem can be solved by a first prototype algorithm, which uses a
matrix Ω. More discussion on the possible choices of Ω will come in the next section.

1. Draw an � × (� + �) random matrix Ω, (from a certain distribution, for a certain �)
2. Form the matrix Y

def= AΩ,
3. Construct a matrix Q whose columns form an orthonormal basis for the range of Y.

Figure 1: PROTO-ALGORITHM (Idea for stage 1)

2 Algorithms for the two stages matrix approximation framework

In this section, we present different algorithms to solve the “stage 1” part, and then the “stage 2”
part of the matrix approximation two stage framework introduced in the previous section 1.

2.1 Stage 1 algorithms

Below are presented 5 different algorithms for the first stage 1, respectively in figures 2, 3, 4, 5, 6.

2.1.1 Randomized Range Finder

The simplest implementation of the proto-algorithm from Figure 1 is the randomized range finder
algorithm [Tro14, slide 52]. Given a matrix A, and a integer � (with � > �) (the “oversampled”
numerical rank), it computes an orthonormal basis Q. The Ω matrix is drawn using a Gaussian
distribution with mean 0 and variance 1 (i.e. the normal distribution, �(0, 1)).

1. Draw an � × � standard Gaussian random matrix Ω,
2. Form the � × � matrix Y

def= AΩ,
3. Construct the � × � matrix Q, from Y’s QR factorization: Y =QR.

Figure 2: RANDOMIZED RANGE FINDER (1st algorithm for Stage 1)

The oversampling parameter �
def= � − � > 0 depends on the matrix dimensions, the decrease of

the ordered singular spectrum and the random test matrices. For Gaussian matrices A, � of the
order of 5 or 10, yields good results6 and there is no need for more oversampling than � [Tro12a].

The QR factorization is done either with Gramm-Schmidt algorithm, Householder reflections
or Givens rotations [GR13, section 10.4], and it is usually in �(�� min(�, �)), but we will not
give anymore detail on this part.

The number of operations (“flops”) necessary for this algorithm is about:

�RandomizedRangeFinder(�, �, �) ≈ � × � × �rand + � × �mult +� × �2 = �(���). (8)

6In practice, my first experiment was to check this numerically.

Master MVA – ENS Cachan 6⇑19 Lilian Besson

https://en.wikipedia.org/wiki/Householder_transformation
https://en.wikipedia.org/wiki/Givens_rotation
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

Where �rand is the time to sample 1 value from a standard Gaussian distribution (�(1) is
reasonable, see the Ziggurat method [MT+00]), and �mult is the time to evaluate a matrix-vector
product of size (�, �)×(�, 1), so about �(��) (in line 2, this is the most consuming part!). So this
first algorithm is in �(���), still linear in �. A log(�) will be obtained by the Fast Randomized
Range Finder algorithm (see below, in section 2.1.4)

2.1.2 Adaptive Randomized Range Finder

In the previous setting, the rank � is fixed and assumed to be know. Actually, we can do better by
adapting the “randomized range finder” algorithm from Figure 2, (almost) for free. In fact, due
to the following lemma 2.1 [Tro12a, WLRT08], we can evaluate the error by setting7 Ð = 10, and
applying it to B

def= (I� −QQ∗)A. We thus get, with probability 1 − Ð−�:

︁(I� −QQ∗)A)︁ ≤ 10

︂
2

Þ
max
�=1...�

︁ (I� −QQ∗)Aæ(�)︁. (9)

Lemma 2.1. Let B be an � × � matrix. Fix � > 0 an integer and a real number Ð > 1. Draw an
independent family {æ(�), � = 1 . . . �} of standard Gaussian vectors. Then, with probability at least 0 <
1 − Ð−� < 1:

︁B︁ ≤ Ð

︂
2

Þ
max
�=1...�

︁Bæ(�)︁.
(See [WLRT08, observation 3.3] for a proof).

In consequence, we do not need to fix the over-sampling parameter �, as � will be determined
numerically, depending on the aimed tolerance �. To be more precise, we want to find the smallest
� such as the � × � matrix Q(�) verifies:

︁ (I� −Q(�)(Q(�))∗)A︁ ≤ �. (10)

We then adapt the algorithm from Figure 2 by adding columns to �, so that we get the desired
precision, that can now be measured before hand (see Figure 3).

2.1.3 Randomized Power iteration

The Randomized Range Finder algorithm from Figure 2 (both naive and adaptive versions) sup-
poses that matrices have singular values that decay quickly, as highlighted by equation (7). In
fact, it performs poorly on matrices that have singular values à�(A) that decay slowly or are just
too large [Tro14, slide 63]. Singular vector associated with the small singular values interfere in
the calculation.

The idea behind the power iteration is to reduce the weight associated to those values. In
order to do so, we compute the matrix A� instead of A = A0, where � ∈ N is an “iteration”
parameter:

A�
def= (AA∗)� A. (11)

Then, we get its singular values, simply by the usual properties on A∗:

∀� ∈ N, à�(Bq) = à�(A)2�+1, for � = 1, 2, 3 . . . (12)

And thus we can propose the Randomized Power Iteration stage 1 algorithm, where A and
� ≥ 0 are given, see Figure 4.

7This α = 10 is an arbitrary choice, for sake of elegance.

Master MVA – ENS Cachan 7⇑19 Lilian Besson

http://www.jstatsoft.org/v05/i08/
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

Input: matrix A, and � =min(�, �).
1. Draw � iid standard Gaussian vectors {æ(�), � = 1 . . . �}, of size �,
2. For � = 1 . . . �, compute �(�)

def= Aæ(�),
3. �

def= 0

4. Q(0)
def= ︁︁ (We use MATLAB notation for matrices)

5. While max�=1...� ︁�(�+�)︁ > �⇑ (10
︂

2
Þ
) : (Using bound from equation (9))

6. � ←Ð � + 1

7. �(�)
def= (I� −Q(�−1)(Q(�−1))∗)�(�) (New column, orthogonal to the previous ones)

8. �(�)
def= �(�)⇑︁�(�)︁ (Normalized new column)

9. Q(�) ←Ð ︀Q(�−1) �(�)︀ (One more column in Q)
10. Draw a Gaussian æ(�+�), of length �

11. �(�+�) def= (I −Q(�)(Q(�))∗)Aæ(�+�)

12. For � = 1 . . . � − 1 : (Simple Gramm-Schmidt process)
13. �(�+�) ←Ð �(�+�) − �(�+�)︀�(�+�), �(�+�)︀
14. End For.
15. End While.

16. Return Q
def= Q(last) =Q(�).

Figure 3: ADAPTIVE RANDOMIZED RANGE FINDER (2nd algorithm for Stage 1)

1. Draw an � × � standard Gaussian random matrix Ω,
2. Form the � × � matrix Y�

def= A�Ω = (AA∗)�AΩ, via alternative application8 of A and A∗,
3. Construct the � × � matrix Q, from Y�’s QR factorization: Y� =QR.

Figure 4: RANDOMIZED POWER ITERATION (3rd algorithm for Stage 1)

Remark 2.2. What if � = 0? From equation (11), A0 = A, so this third algorithm Figure 4 boils down
to the first one (“Randomized Range Finder”, Figure 2). In practice, we implemented the “Randomized
Power Iteration” algorithm with a general parameter � ∈ N, and using it with � = 0 allows to have the first
one “for free” (see in subsection 4.3, or the file RandomizedRangeFinder.m).

Robustness to rounding errors

Remark 2.3. Rounding errors in this algorithm for floating-point operations result in killing singular
modes associated with singular values small compared to ︁A︁. One way to overcome this issue is done by
ortho-normalizing the columns after each application of A and A∗.

Remark 2.4. (Adaptive Power/Subspace Iteration Algorithm) Like in the previous case, we can easily
derive an adaptive version of the power iteration algorithm [HMT11, remark 4.3], using the same trick to
evaluate the error on-line. Due to space constraint, this will not be developed here.

2.1.4 Fast Randomized Range Finder

In fact, random Gaussian matrices are not adapted for dense matrices [Tro12b]. One way to
adapt to dense matrices (without special structures) is to use the Fast Fourier Transform (FFT)

Master MVA – ENS Cachan 8⇑19 Lilian Besson

https://en.wikipedia.org/wiki/Fast_Fourier_transform
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

1. Draw an � × � Gaussian random matrix Ω,
2. Let �0

def= AΩ, and compute its QR factorization: �0 = �0�0,
3. For � = 1 . . . �

4. Let � ′�
def= �∗��−1, and compute its QR factorization: � ′� = �′��′� ,

5. Let ��
def= ��′� , and compute its QR factorization: �� = ���� ,

6. End For.
7. Return: the � × � matrix Q

def= �fin = ��.

Figure 5: RANDOMIZED SUBSPACE ITERATION (more stable 3rd algorithm for Stage 1)

[CT65, DV90]. Therefore, we will use the sub-sampled random Fourier transform (SRFT) [HMT11,
section 4.6]. The goal being to choose a structured random matrix Ω.One advantage of this last al-
gorithm is that it runs in �(�� log(�)) for dense matrices, where previous algorithms where all
in �(���).

We need to consider sub-sampled RFT because we sample only for � columns, and random
because we randomly rotate on each direction. Without giving too much details due to space
constraints (see [HMT11, Eq. (4.6)]), a SRFT is a matrix Ω of size � × �, defined by 3 components:

Ω
def=
︂

�

�
×D ×ℱ ×R. (13)

• Where D is a � × � diagonal matrix whose entries are iid random variables distributed on
the complex unit circle9 (i.e. complex Rademacher variables),

• ℱ is the � × � unitary discrete Fourier transform (DFT),

• R is an � × � matrix whose � columns are uniformly drawn from the � × � identity matrix I�

(it is a random sample of columns, see above about the column selection methods).

Having introduced this notion of SRFT, we can then present this last stage 1 algorithm, more
suited for dense matrices than the previous ones:

1. Draw an � × � SRFT test matrix Ω as above (randomly),
2. Form the � × � matrix Y

def= AΩ using sub-sampled FFT,
3. Construct the � × � matrix Q using Y’s QR factorization (as before).

Figure 6: FAST RANDOMIZED RANGE FINDER (4th algorithm for Stage 1)

For step 2, the cost of forming Y = AΩ will be about �(�� log �), by using the FFT algorithm
[CT65, DV90]. So, the number of operations (flops) necessary for this algorithm is about:

�FastRandomizedRangeFinder(�, �, �) ≈� × � × log(�) +� × �2 = �(�� log(�)). (14)

No error bound for this last stage 1 algorithm will be presented, cf. [BG13, theorem 7] if
needed.

9Note that some authors impose D to be real, in which case its diagonal elements are just random signs, i.e. classical
Rademacher random variables in {−1, 1}, cf. [Tro14, slide 63] and [HMT11, section 4.6].

Master MVA – ENS Cachan 9⇑19 Lilian Besson

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/DFT_matrix
https://en.wikipedia.org/wiki/Rademacher_distribution
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

2.2 Stage 2 algorithms

In this subsection, we first give a general discussion about factorizations transforms, and then one
example of algorithm for stage 2 (using SVD).

2.2.1 From one factorization to another?

The main low rank approximations are the QR decomposition and the truncated SVD [Cip00].
In general, we can derive any matrix factorization from any other one, almost for free. Indeed,
suppose we got the following low-rank approximation for A, with precision at least � > 0:

︁ A

�︀×�

− B

�︀×�

× C

�︀×�

︁ ≤ �. (15)

Obtaining A’s QR factorization: We can easily get A’s QR factorization through:
1. Computing C’s QR decomposition: C = �1�1,
2. Forming the product D

def= �1B, and computing its QR decomposition: D = �2R,
3. Finally, forming the matrix Q

def= �1�2.
The resulting QR factorization has at least the same precision:

︁A −QR︁ ≤ �. (16)

Obtaining A’s SVD: We can also easily get A’s SVD through:
1. Computing C’s QR decomposition: C = �1�1,
2. Forming the product: D

def= �1B and computing its SVD: D = �2ΣV∗,
3. Finally, forming the product: U

def= �1�2.
The resulting SV decomposition has at least the same precision:

︁A −UΣV∗︁ ≤ �. (17)

Remark 2.5. We could apply the same technique for other factorizations.

2.2.2 Direct SVD

In the stage 2, a naive but efficient approach is to simply use a classic algorithm on B =Q∗A, and
using the SVD as announced before yields this factorization scheme, which expresses visually the
factorization trick to reduce computational complexity or storage space:

Figure 7: Stage 2 : Forming the SVD (figure from [Tro14, slide 41]).

This gives the following naive algorithm, in Figure 8:

Master MVA – ENS Cachan 10⇑19 Lilian Besson

http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

Input: Given a matrix A and an orthonormal basis Q from stage 1.
1. Form the matrix B

def= Q∗A,
2. Compute the SVD of the matrix B = ŨΣV∗,
3. Form the orthonormal matrix U

def= QŨ.

Figure 8: DIRECT SVD (Stage 2)

This algorithm relies on the stage 1 algorithm we chose to use, but we observe that if the stage
1 algorithm is precise with tolerance � > 0, then this algorithm is as precise (thanks to (17)):

︁A −UΣV∗︁ ≤ �. (18)

This algorithm has a total complexity of �(� × � × � + �2�) flops [Tro14, slide 41].

2.2.3 Other stage 2 algorithms?

We could detail other possibilities for stage 2 algorithms, but as explained above, the naive one is
already working quite well in general. For more details, refer to [HMT11, section 5, 5.2 to 5.5].

3 Theoretical analysis

In this section, we first give a few preliminary linear algebra results, mainly on p.s.d. matrices,
and standard Gaussian matrices. Then the lemmas are used to give and prove some error bounds
on the algorithms presented before.

3.1 Preliminaries

Let us start by presenting some useful properties of positive semi-definite (p.s.d.) matrices [GE96,
WLRT08, AM07]. For all this part, let � ∈ N∗, and consider � a (square) p.s.d. matrix of size �.

Lemma 3.1 (Perturbation of inverses). ([HMT11, prop 8.2])
Let � ⪰ 0 (positive semi-definite). Then:

I − (I +�)−1 ⪯�.

Proof. We have: I−(I+�)−1 =�(I+�)−1 =�−1⇑2(I+�)−1�−1⇑2 ⪯� . Because � ⪰ 0, I+� ⪰ 1,
and so (I +�)−1 ⪯ 1.

Remark 3.2. Note: due to space constraints, we will not prove every result in this theoretical part. Most
lemmas and properties can be found in [HMT11, section 8.1 and part III].

Lemma 3.3. ([HMT11, prop 8.3]) Let � be a p.s.d. matrix written in block form, with � and �∗ on the

anti-diagonal: � = ︀ � �

�∗ �
︀. Then we can say that (for the spectral matrix norm ︁ ⋅︁): ︁�︁ ≤ ︁�︁+︁�︁.

From now on, let �� design the unique orthogonal projector such that range(�) = range(��).
If � has full range, we can write: �� =� (�∗�)−1

�∗.

Master MVA – ENS Cachan 11⇑19 Lilian Besson

https://en.wikipedia.org/wiki/Positive_semi-definite_matrix
https://en.wikipedia.org/wiki/Projection_%28linear_algebra%29#Orthogonal_projections
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

Lemma 3.4. ([HMT11, prop 8.4]) Let � be an unitary matrix, then �∗�� � = ��∗� .

Proof. First, because � is unitary and �� is a projector,

(�∗�� �)(�∗�� �) = �∗(��(��∗)��)� = �∗� 2
� � = �∗�� �.

So �∗�� � is a projector, and is orthogonal since it is Hermitian ((�∗�� �)∗ = �∗� ∗�(�∗)∗ =
�∗�� �). And we know that orthogonal projectors are fully determined by their range, so it
suffices to determine the range of �∗�� � , and this is quite direct:

range(�∗�� �) = �∗range(��) = range(��∗�).
And so, we have exactly what we announced: �∗�� � = ��∗� .

We also have this last property, true for any orthogonal projector � (not necessarily ��):

Proposition 3.5. ([HMT11, prop 8.6]) Let � be any orthogonal projector, � any matrix and � ≥ 0.

∀� ≥ 0, ︁��︁ ≤ ︁� (��∗)��︁1⇑(2�+1). (19)

Remark 3.6. This result is supporting the idea used for the Power Iteration algorithm in section 2.1.3:
working on (��∗)�� increase the decay of the spectrum, geometrically in �.

Now, we give a few results about (standard) Gaussian matrices10 that are mainly coming from
[HMT11, part 8] and presented in the shorter article [Tro12a].

Proposition 3.7. ([HMT11, prop 8.8]) Set � and � , and draw a Gaussian matrix � of same size. Then:

︀︀︀︀
︀︀︀
E ︀︁��� ︁2� ︀ = (︁�︁� × ︁� ︁�)2 .

E ︁︁��� ︁︁ ≤ ︁�︁ × ︁� ︁� + ︁� ︁ × ︁�︁� .
(20)

Where ︁ ⋅ ︁� designs the ℓ2,2 Fröbenius matrix norm, and ︁ ⋅ ︁ is the spectral ℓ2 matrix norm.

Proposition 3.8. ([HMT11, prop 8.9]) Let � be a � × (� + �) Gaussian matrix with �, � ≥ 2. Then:

︀︀︀︀
︀︀︀
E ︀︁�†︁2� ︀ = �⇑(� − 1).
E ︀︁�†︁︀ = e

︂
� + �⇑�.

(21)

Finally, we have this concentration inequality, which is needed for the proofs of the probabilis-
tic error bounds for the Range Finder algorithm (theorem 3.13):

Proposition 3.9 (Concentration inequality). Let ℎ be a �-Lipschitz function (on matrices), and � a
standard Gaussian matrix. Then:

∀� ∈ R, P{ℎ(�) ≥ E ︁ℎ(�) +��︁ } ≤ �−�2⇑2. (22)

Proof. It comes quite quickly from the generalized Hoeffding’s inequality.

10I.e. random matrices drawn from a multi-variate normal distribution,�(µ, Σ) in R
d.

Master MVA – ENS Cachan 12⇑19 Lilian Besson

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://mathworld.wolfram.com/FrobeniusNorm.html
https://en.wikipedia.org/wiki/Lipschitz_continuity
https://en.wikipedia.org/wiki/Hoeffding's_inequality
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

3.2 Error bounds

The goal of this part is to provide some theoretical warranties on the efficiency and precision of
some of algorithms presented before in section 2. A more complete analysis for some algorithms
can be found in [HMT11]. In all this part, let A ∈M�,�(R) be fixed. We use the notations from the
algorithms presented above in section 2. We will focus on controlling the backward error: ︁A−BC︁
with a tolerance tol

def= � if A is factored as BC.
Let us first rewrite A’s SVD by splitting is singular values matrix Σ into the first � values in

Σ1 and the � − � others in Σ2:

A =U(Σ1 0

0 Σ2
)(� ∗1

� ∗2
) . (23)

and so we also have the same “splitting” for Ω: Ω1 = � ∗1 Ω and Ω2 = � ∗2 Ω.
Now, for the � matrix (the “compressed” version of �), as used in the algorithms, we have:

Y
def= AΩ =U(Σ∗1Ω1

Σ∗2Ω2
) . (24)

And finally, by writing �Y explicitly thanks to lemma 3.4, we have this major result, used in
all the theorem that follow: ︁A −QQ∗A︁ = ︁(� − �Y)A︁.
3.2.1 Error bound for the Proto-Algorithm

The most important theorem for the Proto-Algorithm is the one that follows.

Theorem 3.10 (Deterministic Error Bound for the Proto-algorithm). ([HMT11, theorem 9.1])
Assuming that Ω1 has full row rank:

︁(� − �Y)A︁2 ≤ ︁Σ2︁2 + ︁Σ2Ω2Ω†
1︁. (25)

Proof. Let: Ã
def= �∗A and �̃ = ÃΩ. We get: ︁(I − �Y)A︁ = ︁�∗(I − �Y)�Ã︁ = ︁(I − ��̃)Ã︁. There

are two cases:(1) On one hand, if Σ1 is not strictly positive, then Σ2 = 0 because of the singular value order-

ing: range(�̃) = range((Σ1Ω1

0
)) = range(�̃). This degenerate case implies that: ︁(I − ��̃)�̃︁ = 0.

(2) On the other hand, if Σ1 is strictly positive, then let �
def= (Σ1Ω1

0
). Since Ω1 has full row-

rank: range(�) = range((I�

0
)). And so its orthogonal projector will be �� = (0 0

0 I
).

We then construct the matrix � by flattening the top of �̃ : � = �̃ Ω∗1Σ−1
1 . By construction, range(Z) ⊂

range(Ỹ). Hence, we have that: ︁(I − ��̃ �̃)︁ ≤ ︁(I − ���̃)︁. And so, we get: ︁(I − ��̃ �̃)︁ ≤︁Σ∗(I − ��)Σ︁.
To conclude the proof, two applications of the lemma 3.3 suffice. For all the details, see pages

51–54 of [HMT11].

3.2.2 Error bounds for the range finder algorithm

We keep the same notations as before. This second theorem gives a deterministic error bound for
the range finder algorithm Figure 2.

Master MVA – ENS Cachan 13⇑19 Lilian Besson

http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

Theorem 3.11 (Average Fröbenius and spectral norm errors). ([HMT11, theorems 10.5 and 10.6])
If �, � ≥ 2 and � + � ≤min(�, �), we have for the Fröbenius norm:

E ︁Error� ︁ = E ︁︁(� − �Y)A︁� ︁ ≤ (1 + �

� − 1
)1⇑2 ⎛⎝∑�>� à2

� (A)⎞⎠
1⇑2

. (26)

And for the spectral norm:

E ︁Error︁ = E ︁︁(� − �Y)A︁︁ ≤ (1 + �

� − 1
)à�+1(A) + e

︂
� + �

�

⎛⎝∑�>� à2
� (A)⎞⎠

1⇑2

(27)

Remark 3.12. The second inequality (27) is too loose because it is derived from the inequality on the
Fröbenius norm (26). We can see also that the minimal error we can get is the one we get with truncated
exact SVD.

We conclude this section with this other result, which gives a probabilistic error bounds, again
for both the Fröbenius and spectral norms.

Theorem 3.13 (Probabilistic Fröbenius and spectral norm errors). ([HMT11, theorem 10.6])

Now for � ≥ 4 and � ≥ 1, with probability at least 2�−� + e−�2⇑2, we have for the Fröbenius norm:

︁(� − �Y)A︁� ≤ ⎛⎝1 + �

︂
3�

� + 1

⎞⎠⎛⎝∑�>� à2
�

⎞⎠
1⇑2 + �� ⋅

e
︂

� + �

�
⋅ à�+1(A) (28)

And for the spectral norm:

︁(� − �Y)A︁ ≤ ︀⎛⎝1 + �

︂
3�

� + 1

⎞
⎠à�+1(A) + �

e
︂

� + �

�

⎛
⎝∑�>� à2

� (A)⎞⎠
1⇑2

︀ + �� ⋅
�
︂

� + �

�
à�+1(A) (29)

Proof. For both theorems, see [HMT11, sections 10.2 and 10.3].

3.3 Comments on the error bounds

Here we should precise that these bounds are asymptotic. In practice, it should not be surprising
to obtain a better performance than the pessimistic bound. Additionally, one should keep in mind
that the various stage 1 algorithms presented above in subsection 2.1 are all specific to a certain
type of matrices. For more errors bounds on these algorithms, all the details can be found in the
reference paper [HMT11]. For example, for the power scheme for the randomized range finder
(algorithms from Figure 4 and Figure 5), a simple error bound is presented in [HMT11, section 10,
theorem 8].

We said that this algorithm does not work well if A’s spectrum is not fast-decaying, and we
can observe that the bounds for the Range Finder algorithm depend on ∑�>� à2

� (A), the “tail” of
A’s spectrum. For the spectral norm bound (29), an emphasis is put on the (� + 1)-th singular
value à�+1(A), which comes from L.Mirsky’s theorem given above in (7).

Master MVA – ENS Cachan 14⇑19 Lilian Besson

http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

4 Implementation and numerical experiments

In this section, we present shortly what was implemented, how and why, and then two numerical
experiments on artificial data are presented. An emphasis was put on the reproducibility of these
experiments, not on the optimization of my implementation. Both experiments confirmed the
theoretical bounds and complexities proved in the previous section.

4.1 Quick overview of our implementation

For our implementation, we chose to use GNU Octave, but all the programs are compatible with
MATLAB, and should work on any platform. The code can be found on-line at http://lbo.k.
vu/pcs2016, in the src/ folder. We relied on the Numerical Tours MATLAB toolboxes signal
and general, from [Pey11]11. A few programs are only here for the second experiment, but the
most interesting part is the implementation of our stage 1 algorithms. The only stage 2 algorithm
considered in practice is the naive Direct SVD, even if I also tried with �-truncated SVD (see
QuickDirectSVD.m).

4.2 A first experiment

The first experiment12 is quite small and simple. We simply generated some random matrices
� of size � × �, with � = 100, 200, 400, 800, dense at first, and then sparse with various sparsity
parameter. We checked that all the algorithms presented above were working “as expected”,
in the sense that: they all produce a valid SV decomposition �, Σ, � ⋆, they are not slower than
regular SVD (the stage 1 is usually very quick), and even if they are highly based on random
column sampling, they worked on every tests I performed. We compared them on their norm
errors ︁� −� (�)Σ(�)� (�)

⋆︁ (of the order of 10−12), and on their (decaying) spectra à̃
(�)
� .

4.3 Second experiment on a large sparse matrix

We present here the second experiment13, reproducing the results of the second application from
the main reference paper [HMT11, part 7.2].

This example involves a large matrix that arises in image processing. Some image processing
algorithms uses the geometry of the image for tasks such as denoising and inpainting. They use a
normalized graph Laplacian to represent the geometry of the image.

We worked a small sub-image, to keep our execution time small, and so a small gray-scaled
patch of the standard image Lena14, of size 50 × 50 is considered. As usual, each pixel is repre-
sented by an integer value between 0 and 255. Then, to construct a similarity graph for this image,
each pixel � is represented by a 5 × 5 patch �̂ around this pixel15.

11Free and open-sourced. Our implementation is also open-sourced, see section A.3.
12For this first experiment, the reference program is experiment1.m.
13For this second experiment, the reference program is experiment2.m. It is well commented and gives a lot of

details about the progression of the simulation. See the file experiment2.txt for a complete log file of its output.
14We use hereafter the Lena image for the example, but the same experiment and the same result were observed for

other gray-scaled image (e.g. boat, mandrill). I did not tried on color-scaled image though.
15Note that all these parameters are included in the program as constant defined in the beginning, it would be easy

to try other values – which we did. Increasing the size of the sub-image or the size of the patches only increased the
running time, but we observed the same result.

Master MVA – ENS Cachan 15⇑19 Lilian Besson

http://www.octave.org
http://lbo.k.vu/pcs2016
http://lbo.k.vu/pcs2016
https://bitbucket.org/lbesson/mva15-project-parcimonie-compressed-sensing/src/master/src/
https://github.com/gpeyre/numerical-tours/raw/master/matlab/toolbox_signal.zip
https://github.com/gpeyre/numerical-tours/raw/master/matlab/toolbox_general.zip
https://en.wikipedia.org/wiki/Laplacian_matrix
https://en.wikipedia.org/wiki/Lenna
https://bitbucket.org/lbesson/mva15-project-parcimonie-compressed-sensing/src/master/src/experiment1.m
https://bitbucket.org/lbesson/mva15-project-parcimonie-compressed-sensing/src/master/src/experiment2.m
https://bitbucket.org/lbesson/mva15-project-parcimonie-compressed-sensing/src/master/src/experiment2.txt
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

We calculate the weight matrix W̃, reflecting the similarity between the patches with the usual
exponential similarity (of proximity parameter à) on the Euclidean norm16

�̃��
def= exp(−︁�̂� − �̂�︁2

à2
) .

In practice, we chose à = 50. By zeroing all the entries of the weight matrix W̃ except the � = 7

largest ones in each row, we construct our large sparse matrix W (of size 1296 × 7 here). We can
then construct the graph Laplacian matrix: L = I −D−1⇑2WD1⇑2.

Here, we are interested in the eigenvalues of this matrix A, and on their decay: A =D1⇑2WD−1⇑2

which decay very slowly, as the figure 9 shows.
The blue plot describes the first algorithm (i.e. � = 0) (“Randomized Range Finder”, from Fig-

ure 2). This algorithm runs faster than the others – around 7 seconds – but it is less accurate. The
green plot describes the power iteration17 algorithm, with � = 4 (“Randomized Power Iteration”,
from Figure 4). It takes around 12 seconds to compute but it is more accurate. The last plot in red
represents the SRFT method (“Fast Randomized Range Finder”, from Figure 6). In a shorter time
(about 10 seconds), the last algorithm yields similar results to the power iteration algorithm.

Figure 9: Comparison of the 3 main stage-A algorithms, decay of the first 100 singular values of
A. Randomized Range Finder is quicker but less precise, while Randomized Power Iteration

and Fast Randomized Range Finder are optimal.

16This is classical, see for instance Michal Valko’s 2nd lecture on “Graphs for Machine Learning”, and this lab report.
17For the iteration parameter q ≥ 0, the smaller the quicker, but the higher the more we increase the decay of small

singular values. We tried higher values for q, but apparently staying at q = 2, 3, 4 is always sufficient.

Master MVA – ENS Cachan 16⇑19 Lilian Besson

http://researchers.lille.inria.fr/~valko/hp/
http://researchers.lille.inria.fr/~valko/hp/mva-ml-graphs.php
http://perso.crans.org/besson/publis/mva-2016/MVA_2015-16__Graphs_in_Machine_Learning__TP2__Lilian_Besson.en.pdf
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

5 Conclusion

The framework presented here is quite complete, and mainly comes from [HMT11]. We tried
to present a few algorithms, adapted to each case (as described in the abstract). The main issue
was finding a low rank approximation through randomization (stage 1), to reduce the computa-
tional time complexity of classical techniques. It could be completed with more detailed sampling
methods for other structured matrices and by detailing the corresponding error bounds. Efforts
should also be made to try and derive more sophisticated tools and obtain more powerful error
estimations, if possible. As we have seen, the bounds given here are very large, compared with
the numerical results18. One goal could be to solve the fixed precision problem more efficiently
for sparse and very sparse matrices. Otherwise, one also can improve this framework by deter-
mining a more precise way to get the oversampling parameter, in an adaptive approach for the
SRFT matrices (last stage 1 algorithm).

18But this is quite usual in applied mathematics, for instance the Lai and Robbins upper bound for Multi-Arm
Bandits Problem (MAB) is optimal (1985), but very large in practice (for usual MAB problems, some algorithms are
very much more efficient than the theoretical bound).

Master MVA – ENS Cachan 17⇑19 Lilian Besson

http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

A Appendix

A.1 Acknowledgments

I would like to thank Gabriel Peyré my project advisor, as he replied quickly to my few queries
and provided useful direction of research. Thanks also to my MVA comrade Basile Clement for
proofreading my project report and slides.

A.2 Personal feeling about the project

I enjoyed working on this small project, and as usual for this kind of maths, I liked the different
aspects we touched with this project: algorithms, complexity proofs, implementation, numerical
simulation, proof of inequalities and theorems, linear algebra etc. With more time, I would have
liked to try to apply the algorithms presented here on a real-world problem, or to try to explore
more on the idea of an adaptive oversampling parameter for SRFT matrices.

A.3 References

[Alb72] Arthur Albert (1972). Regression and the Moore-Penrose pseudo-inverse. Elsevier.

[AM07] Dimitris Achlioptas and Frank Mcsherry (2007). Fast Computation of low-rank Matrix Approxima-
tions. Journal of the ACM (JACM), 54(2):9. URL http://dl.acm.org/citation.cfm?id=

1219097.

[BG13] Christos Boutsidis and Alex Gittens (2013). Improved matrix algorithms via the subsampled ran-
domized Hadamard transform. SIAM Journal on Matrix Analysis and Applications, 34(3):1301–1340.
URL http://epubs.siam.org/doi/abs/10.1137/120874540.

[Cip00] Barry Cipra (May 2000). The Best of the 20th Century: Editors Name Top 10 Algorithms. SIAM
News, 33(4):1.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (2009). Introduc-
tion to algorithms third edition. The MIT Press.

[Cou08] Pierre Courrieu (2008). Fast computation of Moore-Penrose inverse matrices. arXiv preprint
arXiv:0804.4809.

[CT65] James W. Cooley and John W. Tukey (1965). An algorithm for the machine calculation of complex
Fourier series. Mathematics of computation, 19(90):297–301. URL http://www.jstor.org/

stable/2003354.

[DMM08] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan (2008). Relative-error CUR matrix
decompositions. SIAM Journal on Matrix Analysis and Applications, 30(2):844–881. URL http:

//arxiv.org/abs/0708.3696v1.

[DS00] Jack Dongarra and Francis Sullivan (February 2000). Top Ten Algorithms of the Century. Comput-
ing in Science and Engineering, 2(1):22–23. URL http://people.sc.fsu.edu/~jburkardt/
fun/misc/algorithms_dongarra.html.

[DV90] Pierre Duhamel and Martin Vetterli (1990). Fast Fourier transforms: a tutorial review and a state of
the art. Signal processing, 19(4):259–299.

[GE96] Ming Gu and Stanley C. Eisenstat (1996). Efficient Algorithms for Computing a strong Rank-
Revealing QR Factorization. SIAM Journal on Scientific Computing, 17(4):848–869. URL http:

//epubs.siam.org/doi/abs/10.1137/0917055.

Master MVA – ENS Cachan 18⇑19 Lilian Besson

https://gpeyre.github.io/
http://dl.acm.org/citation.cfm?id=1219097
http://dl.acm.org/citation.cfm?id=1219097
http://epubs.siam.org/doi/abs/10.1137/120874540
http://www.jstor.org/stable/2003354
http://www.jstor.org/stable/2003354
http://arxiv.org/abs/0708.3696v1
http://arxiv.org/abs/0708.3696v1
http://people.sc.fsu.edu/~jburkardt/fun/misc/algorithms_dongarra.html
http://people.sc.fsu.edu/~jburkardt/fun/misc/algorithms_dongarra.html
http://epubs.siam.org/doi/abs/10.1137/0917055
http://epubs.siam.org/doi/abs/10.1137/0917055
http://perso.crans.org/besson/

Project Report – Sparsity and Compressed Sensing course February 15, 2016

[Giv01] Dan Givoli (2001). The Top 10 Computational Methods of the 20th Century. IACM Expressions, 11:5–
9. URL http://people.sc.fsu.edu/~jburkardt/fun/misc/algorithms_givoli.

html.

[GJ79] Michael R. Garey and David S. Johnson (1979). Computers and Intractability: a guide to the theory
of NP-completeness. W. H. Freeman, New York.

[GR13] Jean-Philippe Grivet and Magali Ribot (DL 2013, cop. 2013). Méthodes numériques appliquées pour
le scientifique et l’ingénieur (in French). Grenoble Sciences. EDP sciences, Les Ulis, 2nd edition.
URL http://laboutique.edpsciences.fr/produit/9782759803866.

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp (2011). Finding Structure with Ran-
domness: Probabilistic algorithms for constructing Approximate Matrix Decompositions. SIAM review,
53(2):217–288. URL http://arxiv.org/abs/0909.4061.

[JL84] William B. Johnson and Joram Lindenstrauss (1984). Extensions of Lipschitz mappings into a
Hilbert space. Contemporary Mathematics, 26(189-206):1.

[MT+00] George Marsaglia, Wai Wan Tsang, et al. (2000). The Ziggurat Method for Generating Random
Variables. Journal of Statistical Software, 5(8):1–7. URL http://www.jstatsoft.org/v05/

i08/.

[Pey11] Gabriel Peyré (2011). The Numerical Tours of Signal Processing. Computing in Science & Engineer-
ing, 13(4):94–97. URL http://www.numerical-tours.com/.

[Rak04] Medhat A. Rakha (2004). On the Moore-Penrose generalized inverse matrix. Applied Mathematics
and Computation, 158(1):185–200.

[SS08] Daniel A. Spielman and Nikhil Srivastava (2008). Graph Sparsification by Effective Resistances.
CoRR, abs/0803.0929. URL http://arxiv.org/abs/0803.0929.

[Tro12a] Joel A. Tropp (December 2012). User-friendly tools for Random Matrices. Neural Information
Processing Systems (NIPS), Stateline. URL http://users.cms.caltech.edu/~jtropp/

talks.html.

[Tro12b] Joel A. Tropp (December 2012). User-friendly tools for Random Matrices. URL https://www.

youtube.com/watch?v=YSupQSKVV7w, tutorial slides, http://users.cms.caltech.

edu/~jtropp/slides/Tro12-User-Friendly-Tutorial-NIPS.pdf.

[Tro14] Joel A. Tropp (June 2014). Finding Structure with Randomness. Tutorial slides, http://users.
cms.caltech.edu/~jtropp/slides/Tro14-Finding-Structure-ICML.pdf.

[WLRT08] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert (2008). A Fast Randomized
Algorithm for the Approximation of Matrices. Applied and Computational Harmonic Analysis, 25:335–
366.

[Zha15] Zhihua Zhang (November 2015). Randomized Numerical Linear Algebra (RNLA): review and pro-
gresses. Tutorial slides, http://bcmi.sjtu.edu.cn/~zhzhang/papers/rnla.pdf.

(Note: a more detailed bibliography is available on-line, in HTML, PDF and BibTEX.)

License?

This paper (and the additional resources – including code, poster images, etc) are publicly pub-
lished under the terms of the MIT License. Copyright 2015-2016, © Lilian Besson.

Master MVA – ENS Cachan 19⇑19 Lilian Besson

http://people.sc.fsu.edu/~jburkardt/fun/misc/algorithms_givoli.html
http://people.sc.fsu.edu/~jburkardt/fun/misc/algorithms_givoli.html
http://laboutique.edpsciences.fr/produit/9782759803866
http://arxiv.org/abs/0909.4061
http://www.jstatsoft.org/v05/i08/
http://www.jstatsoft.org/v05/i08/
http://www.numerical-tours.com/
http://arxiv.org/abs/0803.0929
http://users.cms.caltech.edu/~jtropp/talks.html
http://users.cms.caltech.edu/~jtropp/talks.html
https://www.youtube.com/watch?v=YSupQSKVV7w
https://www.youtube.com/watch?v=YSupQSKVV7w
http://users.cms.caltech.edu/~jtropp/slides/Tro12-User-Friendly-Tutorial-NIPS.pdf
http://users.cms.caltech.edu/~jtropp/slides/Tro12-User-Friendly-Tutorial-NIPS.pdf
http://users.cms.caltech.edu/~jtropp/slides/Tro14-Finding-Structure-ICML.pdf
http://users.cms.caltech.edu/~jtropp/slides/Tro14-Finding-Structure-ICML.pdf
http://bcmi.sjtu.edu.cn/~zhzhang/papers/rnla.pdf
https://bitbucket.org/lbesson/mva15-project-parcimonie-compressed-sensing/src/master/biblio/
https://bitbucket.org/lbesson/mva15-project-parcimonie-compressed-sensing/
https://bitbucket.org/lbesson/mva15-project-parcimonie-compressed-sensing/
http://lbesson.mit-license.org/
http://perso.crans.org/besson/

	Introduction
	Presentation of the problem
	Randomized matrix approximation
	The two stages approach framework

	Algorithms for the two stages matrix approximation framework
	Stage 1 algorithms
	Randomized Range Finder
	Adaptive Randomized Range Finder
	Randomized Power iteration
	Fast Randomized Range Finder

	Stage 2 algorithms
	From one factorization to another?
	Direct SVD
	Other stage 2 algorithms?

	Theoretical analysis
	Preliminaries
	Error bounds
	Error bound for the Proto-Algorithm
	Error bounds for the range finder algorithm

	Comments on the error bounds

	Implementation and numerical experiments
	Quick overview of our implementation
	A first experiment
	Second experiment on a large sparse matrix

	Conclusion
	Appendix
	Acknowledgments
	Personal feeling about the project
	References

