Consider this family of 3 vectors of the linear space $V=\mathbb{R}^{3}: S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ -4 \\ 5\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 4\end{array}\right]\right\}$.

- Qu.1) Are these vectors linearly dependents or independents?

Prove carefully your answer by the method of your choice.

- Qu.2) What is the dimension of the linear space $U=L(S)=\operatorname{span}(S)$ generated by these vectors? $\left(U \subseteq V=\mathbb{R}^{3}\right)$.
Again, you have to justify your answer with one of the methods seen in lectures/tutorials.
- Qu.3) Find one basis for this span U.

How many vectors do you need to give for this basis?

- Qu.4) Now find an orthonormal basis.

What is the simple process you apply?

- Qu.5) (Harder) Finally, find an orthogonal and orthonormal basis.

Again, can you give the name of the process you applied?
(You can start answering from here)
(Your answer stops here)

