1. Let $f(x, y)=\left(x y, y^{2}\right)$. Evaluate $\int_{C_{i}} f . \mathrm{d} r$ where $C_{i}, i=1,2,3$ are given below.
(a) C_{1} is the upper half of the unit circle traversing from $(-1,0)$ to $(1,0)$,
(b) C_{2} is the part of a curve $y=x^{2}$ traversing from $(0,0)$ to $(1,1)$,
(c) C_{3} is the part of a curve $y=x$ traversing from $(0,0)$ to $(1,1)$.
2. Find the work done by the force $f(x, y, z)=-x y \vec{i}+y^{2} \vec{j}+z \vec{k}$ in moving a particle over a circular path $x^{2}+y^{2}=4, z=0$ from the point $(2,0,0)$ to the point $(0,2,0)$.
3. If $f(x, y)=\left(2 x+y^{2}\right) \vec{i}+(3 y-4 x) \vec{j}$ evaluate $\int_{C} f$. $\mathrm{d} r$ around a triangle $A B C$ in the $x y$-plane with vertices $A(0,0), B(2,0)$ and $C(2,1)$.
(a) In the counter-clockwise direction.
(b) In the clockwise direction.
4. If $f(x, y)=\left(y-x^{2} \mathrm{e}^{x}\right) \vec{i}+\left(\cos \left(2 y^{2}\right)-x\right) \vec{j}$, evaluate the line integral along the rectangle with vertices $(0,1),(1,1),(1,3)$ and $(0,3)$.
5. A vector field is given by $f(x, y)=\sin (y) i+x(1+\cos (y)) j$, evaluate the line integral over a circular path $x^{2}+y^{2}=a^{2}, z=0$, where $a \in \mathbb{R}$. Also verify the result using Green's theorem.
6. Verify Green's theorem for $f(x, y)=\mathrm{e}^{-x} \sin (y) i+\mathrm{e}^{-x} \cos (y) j$ and C is the square with vertices at $(0,0),(\pi / 2,0),(\pi / 2, \pi / 2)$ and $(0, \pi / 2)$.
7. Find the work done by the force $f(x, y)=\left(x^{2}-y^{3}\right) i+(x+y) j$ in moving a particle along the path C bounded by the curves $x+y=0, x^{2}+y^{2}=16$ and $y=x$ in the first and fourth quadrants.
8. Using the Green's theorem evaluate the line integral $\int_{C}\left(\left(2 x-y^{3}\right) \mathrm{d} x+x y \mathrm{~d} y\right)$ where C is the boundary of annulus region enclosed by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=9$.
9. Using Green's theorem prove that the area of the region D which bounded by a simple closed curve C can be found by $\frac{1}{2} \int_{C}(x \mathrm{~d} y-y \mathrm{~d} x)$. Then find the area of the ellipse.
10. Evaluate $\int_{C} \frac{x \mathrm{~d} y-y \mathrm{~d} x}{x^{2}+y^{2}}$ along any simple closed curve C in the $x y$ - plane not passing through the origin. Distinguish the cases where the region D is enclosed by C :
(a) includes the origin,
(b) does not includes the origin.
11. Find the surface area of the cylinder bounded by $x^{2}+y^{2}=a^{2}, z=0$ and $z=b, b>0$.
12. Find the surface area of the plane $x+2 y+2 z=12$ cut off by $x=0, y=0$ and $x^{2}+y^{2}=16$.
13. Evaluate $\iint_{S} f . n \mathrm{~d} s$, where $f=y z i+x z j+x y k$ and S is the part of the sphere $x^{2}+y^{2}+z^{2}=1$ which lies in the first octant.
14. Evaluate $\iint_{S} f . n \mathrm{~d} s$, where $f=z i+x j-3 y^{2} z k$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
15. Let S denote the part of the plane $2 x+5 y+z=10$ that lies inside the cylinder $x^{2}+y^{2}=9$. Find the surface area considering S as a part of a graph $z=f(x, y)$ where $f(x, y)=10-2 x-5 y$.
16. Find the area of the part of the surface $z=x^{2}+y^{2}$ that lies between the cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=16$.
17. Let S be the hemisphere $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=4, z \geqslant 0\right\}$. Evaluate $\iint_{S} z^{2} \mathrm{~d} s$, by considering S as a graph given by: $z=f(x, y)$.
18. Let S be a part of the cylinder $y^{2}+z^{2}=1$ that lies between the planes $x=0$ and $x=3$ in the first octant. Evaluate $\iint_{S}(z+2 x y) \mathrm{d} s$.
19. Let $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}, f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be twice differentiable and the second order partial derivatives are continuous on \mathbb{R}^{3}. Prove that
(a) $\overrightarrow{\operatorname{curl}}(\overrightarrow{\operatorname{grad}} \phi)=0$
(b) $\operatorname{div}(\overrightarrow{\operatorname{curl}} f)=0$.
20. Verify Stoke's theorem for $f(x, y, z)=y \vec{i}+z \vec{j}+x \vec{k}$ where S is the upper half of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
21. Evaluate $\left.\int_{C}() 2 y^{3} \mathrm{~d} x+x^{3} \mathrm{~d} y+z \mathrm{~d} z\right)$ where C is the trace of the cone $z=\sqrt{x^{2}+y^{2}}$ intersected by the plane $z=4$ and S is the surface of the cone below $z=4$.
22. Let S be the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$. Show that $\iint_{S}(\nabla \times V) \cdot n \mathrm{~d} s=0$, where V is any differentiable vector field in \mathbb{R}^{3}.
23. If $f(x, y)=\left(2 x y^{2}+y\right) i+\left(2 x^{2} y+\mathrm{e}^{x} y\right) j$, then find the condition on f such that it will be a conservative vector field. Then find the scalar potential function (ϕ) such that $f=\nabla \phi$.
24. Show that $\int_{C}\left((y z-1) \mathrm{d} x+\left(z+x z+z^{2}\right) \mathrm{d} y+(y+x y+2 y z) \mathrm{d} z\right)$ is independent of the path. Then evaluate the line integral from $(1,2,2)$ to $(2,3,4)$.
25. Verify the Gauss divergence theorem for $f=2 x^{2} y i-y^{2} j+4 x z^{2} k$ taken over the region in the first octant bounded by the cylinder $y^{2}+z^{2}=9$ and the plane $x=2$.
26. Let D be the region bounded by the hemisphere $x^{2}+y^{2}+(z-1)^{2}=9,1 \leqslant z \leqslant 4$ and the plane $z=1$. Let $f(x, y, z)=x i+y j+(z-1) k$, then verify Gauss divergence theorem.
27. Let D be the domain inside the cylinder $x^{2}+y^{2}=1$ cut off by the planes $z=0$ and $z=x+2$. If $f(x, y, z)=\left(x^{2}+y \mathrm{e}^{z}, y^{2}+z \mathrm{e}^{x}, z^{2}+x \mathrm{e}^{y}\right)$, use divergence theorem to evaluate $\iint_{S} f . n \mathrm{~d} s$.
28. Use the divergence theorem to evaluate the surface integral $\iint_{S} f . n \mathrm{~d} s$, where $f=(x+$ y, z^{2}, x^{2}) and S is the surface of the hemisphere $x^{2}+y^{2}+z^{2}=1$ with $z>0$ and n is the outward unit normal to S.
