1. Find the limits of following, if exist.

(a)
$$(\sin(\frac{1}{n}), e^{-\frac{1}{n^2}}, \sin(\frac{\pi}{2} - \frac{1}{n}))$$
 (b) $\lim_{(x,y,z)\to(0,0,0)} \frac{(x+y+z)^2}{x^2+y^2+z^2}$ (c) $\lim_{(x,y)\to(0,0)} \frac{xy\cos(y)}{4x^2+y^2+z^2}$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{3x^2|y|}{x^2+y^2} \quad (e) \quad \lim_{(x,y,z)\to(0,0,0)} \frac{1-\cos(x+y+z)}{(x+y+z)^2} \quad (f) \quad \lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$

2. Check the continuity of the following functions. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

(a) $f(x,y) = \frac{\sin(xy)}{xy}$, for $xy \neq 0$ and f(x,y) = 1 for xy = 0. (b) $f(x,y) = \frac{x^3y}{2x^4+y^2}$, for $(x,y) \neq (0,0)$ and f(x,y) = 0 for (x,y) = (0,0).

3. Let $f(x,y) = e^{\frac{-1}{|x-y|}}$, when $x \neq y$. How must f be defined for x = y so that f is continuous on \mathbb{R}^2 ?

4. Let
$$f, g: \mathbb{R}^2 \to \mathbb{R}$$
 be defined by $f(x, y) = |x| + |y|$ and $f(x, y) = |xy|$ for $(x, y) \in \mathbb{R}^2$. Show that

- (a) $f_x(0,0)$ and $f_y(0,0)$ do not exist whereas $g_x(0,0)$ and $g_y(0,0)$ exist.
- (b) for $x_0 \neq 0, g_y(x_0, 0)$ does not exist and for $y_0 \neq 0, g_x(0, y_0)$ does not exist.
- 5. Consider the function $f(x,y) = \frac{3x^2y y^3}{x^2 + y^2}$, for $(x,y) \neq (0,0)$ and f(x,y) = 0 for (x,y) = (0,0).
 - (a) Verify whether f is continuous at (0,0) (b) Evaluate $f_y(x,0)$ for $x \neq 0$ and (c) Verify whether f_y is continuous at (0,0).
- 6. In each of the following cases discuss the differentiability of f at (0,0) where f(x,y), for $(x,y) \in \mathbb{R}^2$ is
- 7. Let f(x,y) = |xy| for all $(x,y) \in \mathbb{R}^2$. Show that
 - (a) f is differentiable at (0,0) (b) $f_x(0,y_0)$ does not exist if $y_0 \neq 0$.
- 8. Consider the function f: R² → R defined by f(x, y) = (x y)² sin(1/(x-y)) if x ≠ y and f(x, x) = 0. Show that
 (a) f_x and f_y exists at all points of R²
 (b) f is differentiable at (0,0)
 (c) f_x and f_y are not continuous on the line y = x.
- 9. (Sufficient conditions for the differentiability) Let $f : \mathbb{R}^2 \to \mathbb{R}$, $X_0 \in \mathbb{R}^2$ be such that all its partial derivatives exist in a neighbourhood of X_0 and are continuous at X_0 then show that f is differentiable at X_0 .
- 10. Let f(x, y) = |x| + |y|, for $(x, y) \in \mathbb{R}^2$. Show that f is continuous at (0, 0) and no directional derivative of f at (0, 0) exists.

¹Please report, any issue to Dr. Chirala Satyanarayana (satyanarayana.chirala@mechyd.edu.in)

- 11. Let $f(x,y) = \sqrt{|xy|}$ for all $(x,y) \in \mathbb{R}^2$ and $(u,v) \in \mathbb{R}^2$ be such that ||(u,v)|| = 1. Show that directional derivative of f at (0,0) in the direction (u,v) exists if and only if (u,v) = (1,0) or (u,v) = (0,1).
- 12. Let $f(x,y) = \frac{x^2y}{x^2+y^2}$ for $(x,y) \neq (0,0)$ and f(x,y) = 0 for (x,y) = (0,0). Show that the directional derivative of f at (0,0) exist in all directions but f is not differentiable at (0,0).
- 13. Consider the function $f(x,y) = \frac{3x^2y-y^3}{x^2+y^2}$ for $(x,y) \neq (0,0)$ and f(x,y) = 0 for (x,y) = (0,0). Find the directional derivative of f at (0,0) in the direction $\frac{1}{\sqrt{2}}(1,1)$. Discuss the differentiability of f at (0,0).
- 14. (a) Let $f : \mathbb{R}^2 \to \mathbb{R}$ and $(u, v) \in \mathbb{R}^2$ be such that ||(u, v)|| = 1. For $(x_0, y_0) \in \mathbb{R}^2$, show that $D_{(x_0, y_0)}f(u, v)$ is the derivative of $f(x_0 + tu, y_0 + tu)$ with respect to t at t = 0.
 - (b) If f(x,y) = xy, using (a), find $D_{(1,1)}f(\frac{\sqrt{3}}{2}, \frac{1}{2})$.
- 15. Let $f(x,y) = x^2 e^y + \cos(xy)$. Find the directional derivative of f at (1,2) in the direction $(\frac{3}{5}, \frac{4}{5})$.
- 16. Let $f(x, y) = 2x^2 + xy + y^2$ describes the temperature at (x, y). Suppose a bug is at (1, 1) and it decides to cool off. What is the best direction for it to move ?.
- 17. For $X \in \mathbb{R}^3$, define f(X) = ||X||. Let $X_0 = (x_0, y_0, z_0) \in \mathbb{R}^3$ and $||X_0|| = 1$,
 - (a) Show that $\nabla f(X_0) = X_0$. (b) Find the unit normal to the sphere f(x, y, z) = 1 at X_0 (c) Find the equation of the tangent plane of the sphere f(x, y, z) = 1 at X_0 .

18. Let
$$z = f(x, y), x = r \cos(\theta), y = r \sin(\theta)$$
.

(a) Show that
$$\frac{\partial z}{\partial r} = \frac{\partial f}{\partial x}\cos(\theta) + \frac{\partial f}{\partial y}\sin(\theta)$$
 & $\frac{1}{r}\frac{\partial z}{\partial \theta} = -\frac{\partial f}{\partial x}\sin(\theta) + \frac{\partial f}{\partial y}\cos(\theta)$
(b) If $f(x,y) = x^2 + 2xy$, show that $\frac{\partial z}{\partial \theta} = 2(x^2 - xy - y^2)$.

19. If z = f(x, y), $x = e^{2u} + e^{-2v}$ and $y = e^{-2u} + e^{2v}$ then, prove that $\frac{\partial f}{\partial u} - \frac{\partial f}{\partial v} = 2\left(x\frac{\partial f}{\partial y} - y\frac{\partial f}{\partial y}\right)$.

- 20. If $J = \frac{\partial(x, y)}{\partial(u, v)}$ and $J^* = \frac{\partial(u, v)}{\partial(x, y)}$. Then
 - (a) Prove that $J.J^* = 1$.
 - (b) If $x = e^u \cos v$ and $y = e^u \sin v$, then verify $J.J^* = 1$.

Multiple Integrals

- 1. Let $R = [a, b] \times [c, d]$ and $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = p(x)q(y) where $p : [a, b] \to \mathbb{R}$ and $q : [c, d] \to \mathbb{R}$ are continuous. Show that $\int \int_R f(x, y) dx dy = (\int_a^b p(x) dx) (\int_c^d q(y) dy)$.
- 2. Let $R = [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}]$. Evaluate $\int \int_R \sin(x) \cos(y) dx dy$.
- 3. Evaluate $\int \int_R \cos(x^3) dx dy$ where R is the region in \mathbb{R}^2 bounded by $y = 3x^2, y = 0$ and x = 1.

- 4. Let R be the region lying below the curve $y = \cos x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ and above the x-axis. Evaluate $\int \int_R \sin(x) dx dy$.
- 5. Let R be the region in \mathbb{R}^2 bounded by the curves $y = 2x^2$ and $y = 1 + x^2$. Evaluate $\iint_R (2x^2 + y) dxdy$.
- 6. Evaluate $\iint R x \cos(y \frac{y^3}{3}) dxdy$. Where $R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$.
- 7. Evaluate the following iterated integrals by interchanging the order of integration.

$$(a) \quad \int_{0}^{1} \int_{y}^{1} \cos(x^{2}) \ dxdy \ (b) \quad \int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^{3}} \ dydx \ (c) \quad \int_{0}^{1} \int_{x^{2}}^{1} x^{3} e^{y^{3}} \ dydx \ (d) \quad \int_{0}^{1} \int_{y}^{1} \frac{1}{1+x^{4}} \ dxdy$$

- 8. Evaluate $\int_0^1 (\arctan \pi x \arctan x) dx$
- 9. Find the volume of the solid enclosed by the surfaces $z = 6 x^2 y^2$, $z = 2x^2 + y^2 1$, x = -1, x = 1, y = -1 and y = 1.
- 10. Let D be the solid bounded by the surfaces $y = x^2$, y = 3x, z = 0 and $z = x^2 + y^2$. Find the volume of D.
- 11. Let D be the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes y + z = 1 and z = 0. Find the volume of D.
- 12. Find the volume of the solid which is common to the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$.
- 13. Consider the transformation $T: [0, 2\pi] \times [0, 1] \to \mathbb{R}^2$ given by $T(u, v) = (2v \cos u, v \sin u)$.
 - (a) For a fixed $v_0 \in [0, 1]$, describe the set $\{T(u, v_0) : u \in [0, 2\pi]\}$.
 - (b) Describe the set $\{T(u, v) : (u, v) \in [0, 2\pi] \times [0, 1]\}.$
- 14. Let R be the region in \mathbb{R}^2 bounded by the straight lines y = x, y = 3x and x + y = 4. Consider the transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(u, v) = (u v, u + v). Find the set $S \subset \mathbb{R}^2$ satisfying T(S) = R.
- 15. Let R be the region in \mathbb{R}^2 bounded by the curve defined in the polar co-ordinates $r = 1 \cos \theta, 0 \le \theta \le \pi$ and the x-axis. Consider the transformation $T : [0, \pi] \times [0, 1] \to \mathbb{R}^2$ defined by $T(r, \theta) = (r \cos \theta, r \sin \theta)$. Let S be the subset of $[0, \pi] \times [0, 1]$ satisfying T(S) = R. Sketch the region S in R.
- 16. Using the change of variable u = x + y and v = x y, show that

$$\int_0^1 \int_0^x (x-y) \ dy dx = \int_0^1 \int_v^{2-v} \frac{v}{2} \ du dv.$$

17. Let R be the region bounded by x = 0, x = 1, y = x and y = x + 1. Show that

$$\int \int_{R} \frac{1}{\sqrt{xy - x^2}} \, dx dy = \left(\int_{0}^{1} \frac{1}{\sqrt{u}} du \right) \, \left(\int_{0}^{1} \frac{1}{\sqrt{v}} dv \right).$$

- 18. Evaluate $\int \int_{R} (x^2 + y^2) dx dy$ where R is the region bounded by $x^2 y^2 = a$, $x^2 y^2 = b$, 2xy = c and 2xy = d. 0 < a < b, 0 < c < d. (Hint: Use $J.J^* = 1$)
- 19. Using suitable change of variables, evaluate

 $\int \int_R \sqrt{(x^2 + y^2)} dx dy$ where R is the region bounded by x = 0, x = 1, y = 0 and y = x.

- 20. Let D denotes the solid bounded by the surfaces $y = x, y = x^2, z = x$ and z = 0. Evaluate $\iint \int \int_D y \, dx \, dy \, dz$.
- 21. Let D denote the solid bounded below by the planes z + y = 2, above by the cylinder $z + y^2 = 4$ and on the sides x = 0 and x = 2. Evaluate $\int \int \int_D x \, dx \, dy \, dz$.
- 22. Suppose $\int_0^4 \int_{\sqrt{x}}^2 \int_0^{2-y} dz dy dx = \int \int \int_D dx dy dz$ for some region $D \subset \mathbb{R}^3$.
 - (a) Sketch the region D. (b) Sketch the projections of D on the xy, yz and xz planes. (c) Write $\int_0^4 \int_{\sqrt{x}}^2 \int_0^{2-y} dz dy dx$ as iterated integrals of other orders.
- 23. Let $D = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} \le 1 \right\}$ and $E = \left\{ (u, v, w) \in \mathbb{R}^3 : u^2 + v^2 + w^2 \le 1 \right\}$. Show that $\int \int \int_D dx dy dz = \int \int \int_E 24 \ du dv dw$.
- 24. In each of the following cases, describe the solid D in terms of the cylindrical co-ordinates.
 - (a) Let D be the solid that is bounded by the paraboloids $z = x^2 + y^2$ and $z = 36 3x^2 3y^2$.
 - (b) Let D be the solid that lies within the cylinder $x^2 + (y-1)^2 = 1$ below the paraboloid $z = x^2 + y^2$ and above the plane z = 0.
 - (c) Let S denote the torus generated by revolving the circle $\{(x, z) : (x 2)^2 + z^2 = 1\}$ about the z- axis. Let D be the solid that is bounded by the surface S and below by z = 0.
- 25. Let *D* be the solid that lies inside the cylinder $x^2 + y^2 = 1$, below the cone $z = \sqrt{4(x^2 + y^2)}$ and above the plane z = 0. Evaluate $\int \int \int_D x^2 dx dy dz$.
- 26. Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x dz dy dx$.
- 27. Describe the following regions in terms of the spherical coordinates.
 - (a) The regions that lies inside the sphere $x^2 + y^2 + (z 2)^2 = 4$ and outside the sphere $x^2 + y^2 + z^2 = 1$.
 - (b) The region that lies below the sphere $x^2 + y^2 + z^2 = z$ and above the cone $z = \sqrt{x^2 + y^2}$.
 - (c) The region that is enclosed by the cone $z = \sqrt{3(x^2 + y^2)}$ and the planes z = 1 and z = 2.
- 28. Let *D* denote the solid bounded above by the planes z = 4 and below by the cone $z = \sqrt{(x^2 + y^2)}$. Evaluate $\int \int \int_D \sqrt{(x^2 + y^2 + z^2)} dx dy dz$.
- 29. Let D denote the solid enclosed by the spheres $x^2 + y^2 + (z 1)^2 = 1$ and $x^2 + y^2 + z^2 = 3$. Using spherical coordinates, set up iterated integrals that gives the volume of D.