$$
\text { Functions of several real variables (MA102, Part-I) }^{1}
$$

1. Find the limits of following, if exist.
(a) $\left(\sin \left(\frac{1}{n}\right), e^{-\frac{1}{n^{2}}}, \sin \left(\frac{\pi}{2}-\frac{1}{n}\right)\right)$
(b) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{(x+y+z)^{2}}{x^{2}+y^{2}+z^{2}}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos (y)}{4 x^{2}+y^{2}}$
(d) $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}|y|}{x^{2}+y^{2}}$
(e) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{1-\cos (x+y+z)}{(x+y+z)^{2}}$
$(f) \lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$
2. Check the continuity of the following functions. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by
(a) $f(x, y)=\frac{\sin (x y)}{x y}$, for $x y \neq 0$ and $f(x, y)=1$ for $x y=0$.
(b) $f(x, y)=\frac{x^{3} y}{2 x^{4}+y^{2}}$, for $(x, y) \neq(0,0)$ and $f(x, y)=0$ for $(x, y)=(0,0)$.
3. Let $f(x, y)=e^{\frac{-1}{|x-y|}}$, when $x \neq y$. How must f be defined for $x=y$ so that f is continuous on \mathbb{R}^{2} ?
4. Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=|x|+|y|$ and $f(x, y)=|x y|$ for $(x, y) \in \mathbb{R}^{2}$. Show that
(a) $f_{x}(0,0)$ and $f_{y}(0,0)$ do not exist whereas $g_{x}(0,0)$ and $g_{y}(0,0)$ exist.
(b) for $x_{0} \neq 0, g_{y}\left(x_{0}, 0\right)$ does not exist and for $y_{0} \neq 0, g_{x}\left(0, y_{0}\right)$ does not exist.
5. Consider the function $f(x, y)=\frac{3 x^{2} y-y^{3}}{x^{2}+y^{2}}$, for $(x, y) \neq(0,0)$ and $f(x, y)=0$ for $(x, y)=(0,0)$.
(a) Verify whether f is continuous at $(0,0)$ (b) Evaluate $f_{y}(x, 0)$ for $x \neq 0$ and (c) Verify whether f_{y} is continuous at $(0,0)$.
6. In each of the following cases discuss the differentiability of f at $(0,0)$ where $f(x, y)$, for $(x, y) \in \mathbb{R}^{2}$ is
(a) $|x|+|y| \quad(b) \quad\|(x, y)\|$
(c) $f(x, y)=0$, for $(x, y) \neq 0 \quad \& \quad f(x, y)=1$, for $\quad(x, y)=0$
(d) $\sqrt{|x y|}$
(e) $\frac{x^{2} y}{\sqrt{x^{2}+y^{2}}}, \quad(x, y) \neq 0 \& f(0,0)=0 \quad(f) \frac{x y}{x^{2}+y^{2}}, \quad(x, y) \neq 0 \& f(0,0)=0 \quad(g) x^{2}+\sin (y)+y^{2} e^{x}$
7. Let $f(x, y)=|x y|$ for all $(x, y) \in \mathbb{R}^{2}$. Show that
(a) f is differentiable at $(0,0) \quad$ (b) $f_{x}\left(0, y_{0}\right)$ does not exists if $y_{0} \neq 0$.
8. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=(x-y)^{2} \sin \left(\frac{1}{x-y}\right)$ if $x \neq y$ and $f(x, x)=0$. Show that (a) f_{x} and f_{y} exists at all points of \mathbb{R}^{2} (b) f is differentiable at (0,0) (c) f_{x} and f_{y} are not continuous on the line $y=x$.
9. (Sufficient conditions for the differentiability) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, X_{0} \in \mathbb{R}^{2}$ be such that all its partial derivatives exist in a neighbourhood of X_{0} and are continuous at X_{0} then show that f is differentiable at X_{0}.
10. Let $f(x, y)=|x|+|y|$, for $(x, y) \in \mathbb{R}^{2}$. Show that f is continuous at $(0,0)$ and no directional derivative of f at $(0,0)$ exists.

[^0]11. Let $f(x, y)=\sqrt{|x y|}$ for all $(x, y) \in \mathbb{R}^{2}$ and $(u, v) \in \mathbb{R}^{2}$ be such that $\|(u, v)\|=1$. Show that directional derivative of f at $(0,0)$ in the direction (u, v) exists if and only if $(u, v)=(1,0)$ or $(u, v)=(0,1)$.
12. Let $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$ and $f(x, y)=0$ for $(x, y)=(0,0)$. Show that the directional derivative of f at $(0,0)$ exist in all directions but f is not differentiable at $(0,0)$.
13. Consider the function $f(x, y)=\frac{3 x^{2} y-y^{3}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$ and $f(x, y)=0$ for $(x, y)=(0,0)$. Find the directional derivative of f at $(0,0)$ in the direction $\frac{1}{\sqrt{2}}(1,1)$. Discuss the differentiability of f at $(0,0)$.
14. (a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $(u, v) \in \mathbb{R}^{2}$ be such that $\|(u, v)\|=1$. For $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, show that $D_{\left(x_{0}, y_{0}\right)} f(u, v)$ is the derivative of $f\left(x_{0}+t u, y_{0}+t u\right)$ with respect to t at $t=0$.
(b) If $f(x, y)=x y$, using (a), find $D_{(1,1)} f\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.
15. Let $f(x, y)=x^{2} e^{y}+\cos (x y)$. Find the directional derivative of f at $(1,2)$ in the direction $\left(\frac{3}{5}, \frac{4}{5}\right)$.
16. Let $f(x, y)=2 x^{2}+x y+y^{2}$ describes the temperature at (x, y). Suppose a bug is at $(1,1)$ and it decides to cool off. What is the best direction for it to move ?
17. For $X \in \mathbb{R}^{3}$, define $f(X)=\|X\|$. Let $X_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ and $\left\|X_{0}\right\|=1$,
(a) Show that $\nabla f\left(X_{0}\right)=X_{0}$. (b) Find the unit normal to the sphere $f(x, y, z)=1$ at X_{0} (c) Find the equation of the tangent plane of the sphere $f(x, y, z)=1$ at X_{0}.
18. Let $z=f(x, y), x=r \cos (\theta), y=r \sin (\theta)$.
(a) Show that $\frac{\partial z}{\partial r}=\frac{\partial f}{\partial x} \cos (\theta)+\frac{\partial f}{\partial y} \sin (\theta) \& \frac{1}{r} \frac{\partial z}{\partial \theta}=-\frac{\partial f}{\partial x} \sin (\theta)+\frac{\partial f}{\partial y} \cos (\theta)$
(b) If $f(x, y)=x^{2}+2 x y$, show that $\frac{\partial z}{\partial \theta}=2\left(x^{2}-x y-y^{2}\right)$.
19. If $z=f(x, y), x=e^{2 u}+e^{-2 v}$ and $y=e^{-2 u}+e^{2 v}$ then, prove that $\frac{\partial f}{\partial u}-\frac{\partial f}{\partial v}=2\left(x \frac{\partial f}{\partial y}-y \frac{\partial f}{\partial y}\right)$.
20. If $J=\frac{\partial(x, y)}{\partial(u, v)}$ and $J^{*}=\frac{\partial(u, v)}{\partial(x, y)}$. Then
(a) Prove that $J . J^{*}=1$.
(b) If $x=e^{u} \cos v$ and $y=e^{u} \sin v$, then verify $J . J^{*}=1$.

Multiple Integrals

1. Let $R=[a, b] \times[c, d]$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=p(x) q(y)$ where $p:[a, b] \rightarrow \mathbb{R}$ and $q:[c, d] \rightarrow \mathbb{R}$ are continuous. Show that $\iint_{R} f(x, y) d x d y=\left(\int_{a}^{b} p(x) d x\right) \quad\left(\int_{c}^{d} q(y) d y\right)$.
2. Let $R=\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right]$. Evaluate $\iint_{R} \sin (x) \cos (y) d x d y$.
3. Evaluate $\iint_{R} \cos \left(x^{3}\right) d x d y$ where R is the region in \mathbb{R}^{2} bounded by $y=3 x^{2}, y=0$ and $x=1$.
4. Let R be the region lying below the curve $y=\cos x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ and above the x -axis. Evaluate $\iint_{R} \sin (x) d x d y$.
5. Let R be the region in \mathbb{R}^{2} bounded by the curves $y=2 x^{2}$ and $y=1+x^{2}$. Evaluate $\iint_{R}\left(2 x^{2}+y\right) d x d y$.
6. Evaluate $\iint_{R} x \cos \left(y-\frac{y^{3}}{3}\right) d x d y$. Where $R=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\}$.
7. Evaluate the following iterated integrals by interchanging the order of integration.
(a) $\int_{0}^{1} \int_{y}^{1} \cos \left(x^{2}\right) d x d y$
(b) $\int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^{3}} d y d x$
(c) $\int_{0}^{1} \int_{x^{2}}^{1} x^{3} e^{y^{3}} d y d x$
(d) $\int_{0}^{1} \int_{y}^{1} \frac{1}{1+x^{4}} d x d y$
8. Evaluate $\int_{0}^{1}(\arctan \pi x-\arctan x) d x$
9. Find the volume of the solid enclosed by the surfaces $z=6-x^{2}-y^{2}, z=2 x^{2}+y^{2}-1, x=-1, x=1, y=-1$ and $y=1$.
10. Let D be the solid bounded by the surfaces $y=x^{2}, y=3 x, z=0$ and $z=x^{2}+y^{2}$. Find the volume of D.
11. Let D be the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $y+z=1$ and $z=0$. Find the volume of D.
12. Find the volume of the solid which is common to the cylinders $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=1$.
13. Consider the transformation $T:[0,2 \pi] \times[0,1] \rightarrow \mathbb{R}^{2}$ given by $T(u, v)=(2 v \cos u, v \sin u)$.
(a) For a fixed $v_{0} \in[0,1]$, describe the set $\left\{T\left(u, v_{0}\right): u \in[0,2 \pi]\right\}$.
(b) Describe the set $\{T(u, v):(u, v) \in[0,2 \pi] \times[0,1]\}$.
14. Let R be the region in \mathbb{R}^{2} bounded by the straight lines $y=x, y=3 x$ and $x+y=4$. Consider the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(u, v)=(u-v, u+v)$. Find the set $S \subset \mathbb{R}^{2}$ satisfying $T(S)=R$.
15. Let R be the region in \mathbb{R}^{2} bounded by the curve defined in the polar co-ordinates $r=1-\cos \theta, 0 \leq \theta \leq \pi$ and the x-axis. Consider the transformation $T:[0, \pi] \times[0,1] \rightarrow \mathbb{R}^{2}$ defined by $T(r, \theta)=(r \cos \theta, r \sin \theta)$. Let S be the subset of $[0, \pi] \times[0,1]$ satisfying $T(S)=R$. Sketch the region S in R.
16. Using the change of variable $u=x+y$ and $v=x-y$, show that

$$
\int_{0}^{1} \int_{0}^{x}(x-y) d y d x=\int_{0}^{1} \int_{v}^{2-v} \frac{v}{2} d u d v
$$

17. Let R be the region bounded by $x=0, x=1, y=x$ and $y=x+1$. Show that

$$
\iint_{R} \frac{1}{\sqrt{x y-x^{2}}} d x d y=\left(\int_{0}^{1} \frac{1}{\sqrt{u}} d u\right) \quad\left(\int_{0}^{1} \frac{1}{\sqrt{v}} d v\right)
$$

18. Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ where R is the region bounded by $x^{2}-y^{2}=a, x^{2}-y^{2}=b, 2 x y=c$ and $2 x y=d .0<a<b, 0<c<d$. (Hint: Use $J . J^{*}=1$)
19. Using suitable change of variables, evaluate
$\iint_{R} \sqrt{\left(x^{2}+y^{2}\right)} d x d y$ where R is the region bounded by $x=0, x=1, y=0$ and $y=x$.
20. Let D denotes the solid bounded by the surfaces $y=x, y=x^{2}, z=x$ and $z=0$. Evaluate $\iiint_{D} y d x d y d z$.
21. Let D denote the solid bounded below by the planes $z+y=2$, above by the cylinder $z+y^{2}=4$ and on the sides $x=0$ and $x=2$. Evaluate $\iiint_{D} x d x d y d z$.
22. Suppose $\int_{0}^{4} \int_{\sqrt{x}}^{2} \int_{0}^{2-y} d z d y d x=\iiint_{D} d x d y d z$ for some region $D \subset \mathbb{R}^{3}$.
(a) Sketch the region D.
(b) Sketch the projections of D on the $x y, y z$ and $x z$ planes.
(c) Write $\int_{0}^{4} \int_{\sqrt{x}}^{2} \int_{0}^{2-y} d z d y d x$ as iterated integrals of other orders.
23. Let $D=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{x^{2}}{4}+\frac{y^{2}}{16}+\frac{z^{2}}{9} \leq 1\right\}$ and $E=\left\{(u, v, w) \in \mathbb{R}^{3}: u^{2}+v^{2}+w^{2} \leq 1\right\}$. Show that $\iiint_{D} d x d y d z=$ $\iiint_{E} 24 d u d v d w$.
24. In each of the following cases, describe the solid D in terms of the cylindrical co-ordinates.
(a) Let D be the solid that is bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=36-3 x^{2}-3 y^{2}$.
(b) Let D be the solid that lies within the cylinder $x^{2}+(y-1)^{2}=1$ below the paraboloid $z=x^{2}+y^{2}$ and above the plane $z=0$.
(c) Let S denote the torus generated by revolving the circle $\left\{(x, z):(x-2)^{2}+z^{2}=1\right\}$ about the $z-$ axis. Let D be the solid that is bounded by the surface S and below by $z=0$.
25. Let D be the solid that lies inside the cylinder $x^{2}+y^{2}=1$, below the cone $z=\sqrt{4\left(x^{2}+y^{2}\right)}$ and above the plane $z=0$. Evaluate $\iiint_{D} x^{2} d x d y d z$.
26. Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{4} \quad x \quad d z d y d x$.
27. Describe the following regions in terms of the spherical coordinates.
(a) The regions that lies inside the sphere $x^{2}+y^{2}+(z-2)^{2}=4$ and outside the sphere $x^{2}+y^{2}+z^{2}=1$.
(b) The region that lies below the sphere $x^{2}+y^{2}+z^{2}=z$ and above the cone $z=\sqrt{x^{2}+y^{2}}$.
(c) The region that is enclosed by the cone $z=\sqrt{3\left(x^{2}+y^{2}\right)}$ and the planes $z=1$ and $z=2$.
28. Let D denote the solid bounded above by the planes $z=4$ and below by the cone $z=\sqrt{\left(x^{2}+y^{2}\right)}$. Evaluate $\iiint_{D} \sqrt{\left(x^{2}+y^{2}+z^{2}\right)} d x d y d z$.
29. Let D denote the solid enclosed by the spheres $x^{2}+y^{2}+(z-1)^{2}=1$ and $x^{2}+y^{2}+z^{2}=3$. Using spherical coordinates, set up iterated integrals that gives the volume of D.

[^0]: ${ }^{1}$ Please report, any issue to Dr. Chirala Satyanarayana (satyanarayana.chirala@mechyd.edu.in)

