
Functions of several real variables (MA102, Part−I) 1

1. Find the limits of following, if exist.

(a) (sin(
1

n
), e−

1

n2 , sin(
π

2
− 1

n
)) (b) lim

(x,y,z)→(0,0,0)

(x+ y + z)2

x2 + y2 + z2
(c) lim

(x,y)→(0,0)

xy cos(y)

4x2 + y2

(d) lim
(x,y)→(0,0)

3x2|y|
x2 + y2

(e) lim
(x,y,z)→(0,0,0)

1− cos(x+ y + z)

(x+ y + z)2
(f) lim

(x,y)→(0,0)

sin(x2 + y2)

x2 + y2

2. Check the continuity of the following functions. Let f : R2 → R be defined by

(a) f(x, y) = sin(xy)
xy

, for xy 6= 0 and f(x, y) = 1 for xy = 0.

(b) f(x, y) = x3y

2x4+y2 , for (x, y) 6= (0, 0) and f(x, y) = 0 for (x, y) = (0, 0).

3. Let f(x, y) = e
−1

|x−y| , when x 6= y. How must f be defined for x = y so that f is continuous on R
2 ?

4. Let f, g : R2 → R be defined by f(x, y) = |x|+ |y| and f(x, y) = |xy| for (x, y) ∈ R
2. Show that

(a) fx(0, 0) and fy(0, 0) do not exist whereas gx(0, 0) and gy(0, 0) exist.

(b) for x0 6= 0, gy(x0, 0) does not exist and for y0 6= 0, gx(0, y0) does not exist.

5. Consider the function f(x, y) = 3x2y−y3

x2+y2 , for (x, y) 6= (0, 0) and f(x, y) = 0 for (x, y) = (0, 0).

(a) Verify whether f is continuous at (0, 0) (b) Evaluate fy(x, 0) for x 6= 0 and (c) Verify whether fy is

continuous at (0, 0).

6. In each of the following cases discuss the differentiability of f at (0, 0) where f(x, y), for (x, y) ∈ R
2 is

(a) |x|+ |y| (b) ||(x, y)|| (c) f(x, y) = 0, for (x, y) 6= 0 & f(x, y) = 1, for (x, y) = 0 (d)
√

|xy|

(e)
x2y

√

x2 + y2
, (x, y) 6= 0 & f(0, 0) = 0 (f)

xy

x2 + y2
, (x, y) 6= 0 & f(0, 0) = 0 (g) x2 + sin(y) + y2ex

7. Let f(x, y) = |xy| for all (x, y) ∈ R
2. Show that

(a) f is differentiable at (0, 0) (b) fx(0, y0) does not exists if y0 6= 0.

8. Consider the function f : R2 → R defined by f(x, y) = (x− y)2 sin( 1
x−y

) if x 6= y and f(x, x) = 0. Show that

(a) fx and fy exists at all points of R2 (b) f is differentiable at (0,0) (c) fx and fy are not continuous on

the line y = x.

9. (Sufficient conditions for the differentiability) Let f : R2 → R, X0 ∈ R
2 be such that all its partial derivatives

exist in a neighbourhood of X0 and are continuous at X0 then show that f is differentiable at X0.

10. Let f(x, y) = |x|+ |y|, for (x, y) ∈ R
2. Show that f is continuous at (0, 0) and no directional derivative of f

at (0, 0) exists.
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11. Let f(x, y) =
√

|xy| for all (x, y) ∈ R
2 and (u, v) ∈ R

2 be such that ||(u, v)|| = 1. Show that directional

derivative of f at (0, 0) in the direction (u, v) exists if and only if (u, v) = (1, 0) or (u, v) = (0, 1).

12. Let f(x, y) = x2y

x2+y2 for (x, y) 6= (0, 0) and f(x, y) = 0 for (x, y) = (0, 0). Show that the directional derivative

of f at (0, 0) exist in all directions but f is not differentiable at (0, 0).

13. Consider the function f(x, y) = 3x2y−y3

x2+y2 for (x, y) 6= (0, 0) and f(x, y) = 0 for (x, y) = (0, 0). Find the

directional derivative of f at (0, 0) in the direction 1√
2
(1, 1). Discuss the differentiability of f at (0, 0).

14. (a) Let f : R2 → R and (u, v) ∈ R
2 be such that ||(u, v)|| = 1. For (x0, y0) ∈ R

2, show that D(x0,y0)f(u, v)

is the derivative of f(x0 + tu, y0 + tu) with respect to t at t = 0.

(b) If f(x, y) = xy, using (a), find D(1,1)f(
√
3
2 , 1

2 ).

15. Let f(x, y) = x2ey + cos(xy). Find the directional derivative of f at (1, 2) in the direction ( 35 ,
4
5 ).

16. Let f(x, y) = 2x2 + xy + y2 describes the temperature at (x, y). Suppose a bug is at (1, 1) and it decides to

cool off. What is the best direction for it to move ?.

17. For X ∈ R
3, define f(X) = ||X||. Let X0 = (x0, y0, z0) ∈ R

3 and ||X0|| = 1,

(a) Show that ∇f(X0) = X0. (b) Find the unit normal to the sphere f(x, y, z) = 1 at X0 (c) Find the

equation of the tangent plane of the sphere f(x, y, z) = 1 at X0.

18. Let z = f(x, y), x = r cos(θ), y = r sin(θ).

(a) Show that
∂z

∂r
=

∂f

∂x
cos(θ) +

∂f

∂y
sin(θ) &

1

r

∂z

∂θ
= −∂f

∂x
sin(θ) +

∂f

∂y
cos(θ)

(b) If f(x, y) = x2 + 2xy, show that
∂z

∂θ
= 2(x2 − xy − y2).

19. If z = f(x, y) , x = e2u + e−2v and y = e−2u + e2v then, prove that
∂f

∂u
− ∂f

∂v
= 2

(

x
∂f

∂y
− y

∂f

∂y

)

.

20. If J =
∂(x, y)

∂(u, v)
and J∗ =

∂(u, v)

∂(x, y)
. Then

(a) Prove that J.J∗ = 1.

(b) If x = eu cos v and y = eu sin v, then verify J.J∗ = 1.

Multiple Integrals

1. Let R = [a, b]× [c, d] and f : R2 → R be defined by f(x, y) = p(x)q(y) where p : [a, b] → R and q : [c, d] → R

are continuous. Show that
∫ ∫

R
f(x, y) dxdy = (

∫ b

a
p(x)dx) (

∫ d

c
q(y)dy).

2. Let R = [0, π
2 ]× [0, π

2 ]. Evaluate
∫ ∫

R
sin(x) cos(y) dxdy.

3. Evaluate
∫ ∫

R
cos(x3) dxdy where R is the region in R

2 bounded by y = 3x2, y = 0 and x = 1.
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4. Let R be the region lying below the curve y = cosx,−π
2 ≤ x ≤ π

2 and above the x-axis. Evaluate
∫ ∫

R
sin(x) dxdy.

5. Let R be the region in R
2 bounded by the curves y = 2x2 and y = 1 + x2. Evaluate

∫ ∫

R
(2x2 + y) dxdy.

6. Evaluate
∫ ∫

R
x cos(y − y3

3 ) dxdy. Where R =
{

(x, y) ∈ R
2 : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0

}

.

7. Evaluate the following iterated integrals by interchanging the order of integration.

(a)

∫ 1

0

∫ 1

y

cos(x2) dxdy (b)

∫ 1

0

∫ 1

√
x

ey
3

dydx (c)

∫ 1

0

∫ 1

x2

x3ey
3

dydx (d)

∫ 1

0

∫ 1

y

1

1 + x4
dxdy

8. Evaluate
∫ 1

0
(arctanπx− arctanx) dx

9. Find the volume of the solid enclosed by the surfaces z = 6−x2− y2, z = 2x2+ y2− 1, x = −1, x = 1, y = −1

and y = 1.

10. Let D be the solid bounded by the surfaces y = x2, y = 3x, z = 0 and z = x2 + y2. Find the volume of D.

11. Let D be the solid bounded by the cylinder x2+ y2 = 1 and the planes y+ z = 1 and z = 0. Find the volume

of D.

12. Find the volume of the solid which is common to the cylinders x2 + y2 = 1 and x2 + z2 = 1.

13. Consider the transformation T : [0, 2π]× [0, 1] → R
2 given by T (u, v) = (2v cosu, v sinu).

(a) For a fixed v0 ∈ [0, 1], describe the set {T (u, v0) : u ∈ [0, 2π]}.

(b) Describe the set {T (u, v) : (u, v) ∈ [0, 2π]× [0, 1]}.

14. Let R be the region in R
2 bounded by the straight lines y = x, y = 3x and x + y = 4. Consider the

transformation T : R2 → R
2 defined by T (u, v) = (u− v, u+ v). Find the set S ⊂ R

2 satisfying T (S) = R.

15. Let R be the region in R
2 bounded by the curve defined in the polar co-ordinates r = 1 − cos θ, 0 ≤ θ ≤ π

and the x-axis. Consider the transformation T : [0, π]× [0, 1] → R
2 defined by T (r, θ) = (r cos θ, r sin θ). Let

S be the subset of [0, π]× [0, 1] satisfying T (S) = R. Sketch the region S in R.

16. Using the change of variable u = x+ y and v = x− y, show that

∫ 1

0

∫ x

0

(x− y) dydx =

∫ 1

0

∫ 2−v

v

v

2
dudv.

17. Let R be the region bounded by x = 0, x = 1, y = x and y = x+ 1. Show that

∫ ∫

R

1
√

xy − x2
dxdy = (

∫ 1

0

1√
u
du) (

∫ 1

0

1√
v
dv).
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18. Evaluate
∫ ∫

R
(x2 + y2) dxdy where R is the region bounded by x2 − y2 = a, x2 − y2 = b, 2xy = c and

2xy = d. 0 < a < b, 0 < c < d. (Hint: Use J.J∗ = 1)

19. Using suitable change of variables, evaluate

∫ ∫

R

√

(x2 + y2) dxdy where R is the region bounded by x = 0, x = 1, y = 0 and y = x.

20. Let D denotes the solid bounded by the surfaces y = x, y = x2, z = x and z = 0. Evaluate
∫ ∫ ∫

D
y dxdydz.

21. Let D denote the solid bounded below by the planes z + y = 2, above by the cylinder z + y2 = 4 and on the

sides x = 0 and x = 2. Evaluate
∫ ∫ ∫

D
x dxdydz.

22. Suppose
∫ 4

0

∫ 2
√
x

∫ 2−y

0
dzdydx =

∫ ∫ ∫

D
dxdydz for some region D ⊂ R

3.

(a) Sketch the region D. (b) Sketch the projections of D on the xy, yz and xz planes. (c) Write
∫ 4

0

∫ 2
√
x

∫ 2−y

0
dzdydx as iterated integrals of other orders.

23. LetD =
{

(x, y, z) ∈ R
3 : x2

4 + y2

16 + z2

9 ≤ 1
}

and E =
{

(u, v, w) ∈ R
3 : u2 + v2 + w2 ≤ 1

}

. Show that
∫ ∫ ∫

D
dxdydz =

∫ ∫ ∫

E
24 dudvdw.

24. In each of the following cases, describe the solid D in terms of the cylindrical co-ordinates.

(a) Let D be the solid that is bounded by the paraboloids z = x2 + y2 and z = 36− 3x2 − 3y2.

(b) Let D be the solid that lies within the cylinder x2 + (y − 1)2 = 1 below the paraboloid z = x2 + y2 and

above the plane z = 0.

(c) Let S denote the torus generated by revolving the circle
{

(x, z) : (x− 2)2 + z2 = 1
}

about the z− axis.

Let D be the solid that is bounded by the surface S and below by z = 0.

25. Let D be the solid that lies inside the cylinder x2 + y2 = 1, below the cone z =
√

4(x2 + y2) and above the

plane z = 0. Evaluate
∫ ∫ ∫

D
x2 dxdydz.

26. Evaluate
∫ 2

−2

∫

√
4−x2

−
√
4−x2

∫ 4

x2+y2 x dzdydx.

27. Describe the following regions in terms of the spherical coordinates.

(a) The regions that lies inside the sphere x2 + y2 + (z − 2)2 = 4 and outside the sphere x2 + y2 + z2 = 1.

(b) The region that lies below the sphere x2 + y2 + z2 = z and above the cone z =
√

x2 + y2.

(c) The region that is enclosed by the cone z =
√

3(x2 + y2) and the planes z = 1 and z = 2.

28. Let D denote the solid bounded above by the planes z = 4 and below by the cone z =
√

(x2 + y2). Evaluate
∫ ∫ ∫

D

√

(x2 + y2 + z2) dxdydz.

29. Let D denote the solid enclosed by the spheres x2 + y2 + (z − 1)2 = 1 and x2 + y2 + z2 = 3. Using spherical

coordinates, set up iterated integrals that gives the volume of D.
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