Mahindra École Centrale

MA 102: Linear Algebra and Applied Analysis

1 Linear Spaces

Defn 1.1. A nonempty set V along with two operations + and - is a linear space if V satisfies certain axioms (see pp. 3,4 of Apostol). The key axioms are i) If $x, y \in V$ then $x+y \in V$, ii) If $x \in V$ then $c \cdot x \in V$ for all $c \in \mathbb{F}$, and iii) There exists $0_{V} \in V$ such that $x+0_{V}=x$ for all $x \in V$. A set $W \subseteq V$ is a subspace if W is a vector space with operations + and \cdot.

Defn 1.2. For a set $S \subseteq V$, the span of S, $\operatorname{span}(S)$, is the set of all finite linear combinations of elements of S. A finite set S is dependent if there exist $c_{i}, i=1, \ldots, n$ (not all zero), such that $\sum_{i=1}^{n} c_{i} x_{i}=0 . S$ is independent if $\sum_{i=1}^{n} c_{i} x_{i}=0$ implies that $c_{i}=0, i=1, \ldots, n$.
Defn 1.3. A finite set S is a (finite) basis if S is independent and $\operatorname{span}(S)=V$. The dimension, $\operatorname{dim}(V)$, of V is the number of elements in S.

Thrm 1.4. (i) Let V be a n-dimensional linear space. Then every finite basis for V has n elements.
(ii) Every set of independent elements in V can be expanded to a basis for V.
(iii) Every independent set of n elements is a basis.

Defn 1.5. $\langle\cdot, \cdot\rangle$ is an innner product if $i)\langle x, y\rangle=\langle y, x\rangle$, ii) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$, iii) $c\langle x, y\rangle=\langle c x, y\rangle$, and iv) $\langle x, x\rangle>0, x \neq 0 .\|\cdot\|$ is a Euclidean norm given by $\|x\|=\langle x, x\rangle^{\frac{1}{2}}$. Finally, $x \perp y$ if $\langle x, y\rangle=0$.

Thrm 1.6. i) $\|x\|>0$ iff $x \neq 0$. ii) $\|c x\|=|c|\|x\|$. iii) $\|x+y\| \leq\|x\|+\|y\|$.

Defn 1.7. A set S is orthogonal if $x \perp y$ for all $x, y \in S$, $x \neq y$. An orthogonal set S is orthonormal if $\|x\|=1$ for all $x \in S$. A set S is a orthonormal basis for V if S is a basis for V and it is orthonormal. For a set S, the orthogonal complement of $S: S^{\perp}=\{x \in V: x \perp y=$ 0 , for all $y \in S\}$.

Thrm 1.8. Let V be a Euclidean space and let S be a finite-dimensional subspace of V. Then every element $x \in V$ is a sum of two unique elements $s \in S$ and $s^{\perp} \in S^{\perp}$. Furthemore, $s=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}$ is the best approximation of x on S with respect to $\langle\cdot, \cdot\rangle$ where $\left\{e_{1}, \cdots, e_{n}\right\}$ is an orthonormal basis for S.

2 Linear Transformations

Defn 2.1. A map $T: V \rightarrow W$ is a linear map if $i)$ $T(x+y)=T(x)+T(y), x, y \in V$ and ii) $T(c x)=$ $c T(x), x \in V, c \in \mathbb{F}$. The range space $\mathcal{R}(T) \subseteq W$ is given by $\{y \in W, y=T x, x \in V\}$. The null space
$\mathcal{N}(T) \subseteq V$ is given by $\{x: T x=0\}$. For a given $T \in$ $\mathcal{L}(V, W)$, a matrix M of the linear map T is given by $M_{j i}=\left\langle f_{j}, T\left(e_{i}\right)\right\rangle$ where $\left\{e_{i}\right\}$ and $\left\{f_{j}\right\}$ are orthonormal bases of V and W, respectively.

Defn 2.2. Let $A \in \mathbb{F}^{n \times m}$. Then $\operatorname{nullity}(A)=$ $\operatorname{dim}(\mathcal{N}(A))$ and $\operatorname{rank}(A)=\operatorname{dim}(\mathcal{R}(A))$.

Thrm 2.3. Let $T: V \rightarrow W$, let $\left\{e_{i}\right\}$ and $\left\{f_{j}\right\}$ be orthonormal bases of V and W, respectively, and M be the corresponding matrix of the linear map. Let $x \in V$ be such that $x=\sum c_{i} e_{i}$ then $T(x)=\sum d_{j} f_{j}$ where $d=M c$ with $d=\left[d_{1}, \ldots,\right]^{\mathrm{T}}$ and $c=\left[c_{1}, \ldots,\right]^{\mathrm{T}}$.

Thrm 2.4. (The Rank-Nullity Theorem) If V is finitedimensional then $\operatorname{dim}(\mathcal{N}(T))+\operatorname{dim}(\mathcal{R}(T))=\operatorname{dim}(V)$. Furthemore, $\operatorname{nullity}(M)+\operatorname{rank}(M)=\operatorname{dim}(V)$ where M denotes a matrix map of T.

Defn 2.5. Let $A \in \mathbb{F}^{n \times m} . B \in \mathbb{F}^{m \times n}$ is a left inverse of A if $B A=I_{n}$. If $m=n, B$ is an inverse of A if $B A=A B=I_{n}$.

Defn 2.6. A matrix $A \in \mathbb{F}^{n \times n}$ is nonsingular (singular) if A is invertible (not invertible). A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric (skew-symmetric) if $A=A^{\mathrm{T}}\left(A=-A^{\mathrm{T}}\right)$. For a matrix $A \in \mathbb{C}^{m \times n}, A^{*} \in \mathbb{C}^{n \times m}$ denotes the complexconjugate transpose of A given by \bar{A}^{T} where \bar{A} denotes the complex-conjugate matrix of A. A matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian (skew-Hermitian) if $A=A^{*}\left(A=-A^{*}\right)$.

Thrm 2.7. Let $A \in \mathbb{F}^{m \times n}$ and $b \in \mathbb{F}^{m}$. The following statements are equivalent:

1. $A x=b$ has a unique solution,
2. $\operatorname{rank}(A)=\operatorname{rank}([A b])=n$,
3. $\mathcal{N}(A)=\{0\}$.

Thrm 2.8. Every invertible matrix can be written as a product of elementary matrices.

Defn 2.9. A function det: $\mathbb{F}^{n \times n} \rightarrow \mathbb{F}$ is determinant if i) it is linear in columns (or rows), ii) it is zero if two columns (or rows) are the same, and iii) $\operatorname{det}\left(I_{n}\right)=1$.

Defn 2.10. Let $A \in \mathbb{F}^{n \times n}$. ($\left.i, j\right)$ th minor $M_{i j}(A)$ is the $(n-1) \times(n-1)$ matrix with i th row and j th column removed from A. The (i, j) th cofactor $K_{i j}(A)$ is $(-1)^{i+j} \operatorname{det}\left(M_{i j}(A)\right)$. The adjugate matrix $\operatorname{Adj}(A)$ the is $n \times n$ matrix with (i, j) th element $K_{j i}(A)$.

Thrm 2.11. Let $A \in \mathbb{F}^{n \times n}$. Then $\operatorname{det}(A)=$ $\sum A_{i j} K_{i j}(A)$ for any row or column.

Thrm 2.12. Let $A \in \mathbb{F}^{n \times n}$ and $\chi_{A}(x)=\operatorname{det}\left(x I_{n}-A\right)$. Then $\chi_{A}(A)=0_{n \times n}$.

