Mahindra École Centrale

1 Linear Spaces

Defn 1.1. A nonempty set V along with two operations + and \cdot is a *linear space* if V satisfies certain axioms (see pp. 3,4 of Apostol). The key axioms are i) If $x, y \in V$ then $x + y \in V$, ii) If $x \in V$ then $c \cdot x \in V$ for all $c \in \mathbb{F}$, and *iii*) There exists $0_V \in V$ such that $x + 0_V = x$ for all $x \in V$. A set $W \subseteq V$ is a *subspace* if W is a vector space with operations + and \cdot .

Defn 1.2. For a set $S \subseteq V$, the span of S, span(S), is the set of all finite linear combinations of elements of S. A finite set S is *dependent* if there exist c_i , i = 1, ..., n(not all zero), such that $\sum_{i=1}^{n} c_i x_i = 0$. S is independent if $\sum_{i=1}^{n} c_i x_i = 0$ implies that $c_i = 0, i = 1, ..., n$.

Defn 1.3. A finite set S is a *(finite)* basis if S is independent and span(S) = V. The *dimension*, dim(V), of V is the number of elements in S.

- **Thrm 1.4.** (i) Let V be a n-dimensional linear space. Then every finite basis for V has n elements.
- (ii) Every set of independent elements in V can be expanded to a basis for V.
- (iii) Every independent set of n elements is a basis.

Defn 1.5. $\langle \cdot, \cdot \rangle$ is an innner product if $i \rangle \langle x, y \rangle = \langle y, x \rangle$, $ii \rangle \langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$, $iii \rangle c \langle x, y \rangle = \langle cx, y \rangle$, and $iv \rangle \langle x, x \rangle > 0$, $x \neq 0$. $\| \cdot \|$ is a Euclidean norm given by $\|x\| = \langle x, x \rangle^{\frac{1}{2}}$. Finally, $x \perp y$ if $\langle x, y \rangle = 0$.

Thrm 1.6. *i*) ||x|| > 0 iff $x \neq 0$. *ii*) ||cx|| = |c|||x||. *iii*) $||x + y|| \le ||x|| + ||y||$.

Defn 1.7. A set S is orthogonal if $x \perp y$ for all $x, y \in S$, $x \neq y$. An orthogonal set S is orthonormal if ||x|| = 1 for all $x \in S$. A set S is a orthonormal basis for V if S is a basis for V and it is orthonormal. For a set S, the orthogonal complement of S: $S^{\perp} = \{x \in V : x \perp y = 0, \text{ for all } y \in S\}.$

Thrm 1.8. Let V be a Euclidean space and let S be a finite-dimensional subspace of V. Then every element $x \in V$ is a sum of two unique elements $s \in S$ and $s^{\perp} \in S^{\perp}$. Furthemore, $s = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$ is the best approximation of x on S with respect to $\langle \cdot, \cdot \rangle$ where $\{e_1, \dots, e_n\}$ is an orthonormal basis for S.

2 Linear Transformations

Defn 2.1. A map $T: V \to W$ is a *linear map* if *i*) $T(x + y) = T(x) + T(y), x, y \in V$ and *ii*) $T(cx) = cT(x), x \in V, c \in \mathbb{F}$. The range space $\mathcal{R}(T) \subseteq W$ is given by $\{y \in W, y = Tx, x \in V\}$. The null space $\mathcal{N}(T) \subseteq V$ is given by $\{x : Tx = 0\}$. For a given $T \in \mathcal{L}(V, W)$, a matrix M of the linear map T is given by $M_{ji} = \langle f_j, T(e_i) \rangle$ where $\{e_i\}$ and $\{f_j\}$ are orthonormal bases of V and W, respectively.

Defn 2.2. Let $A \in \mathbb{F}^{n \times m}$. Then $\operatorname{nullity}(A) = \dim(\mathcal{N}(A))$ and $\operatorname{rank}(A) = \dim(\mathcal{R}(A))$.

Thrm 2.3. Let $T: V \to W$, let $\{e_i\}$ and $\{f_j\}$ be orthonormal bases of V and W, respectively, and M be the corresponding matrix of the linear map. Let $x \in V$ be such that $x = \sum c_i e_i$ then $T(x) = \sum d_j f_j$ where d = Mc with $d = [d_1, \ldots,]^T$ and $c = [c_1, \ldots,]^T$.

Thrm 2.4. (The Rank-Nullity Theorem) If V is finitedimensional then $\dim(\mathcal{N}(T)) + \dim(\mathcal{R}(T)) = \dim(V)$. Furthemore, $\operatorname{nullity}(M) + \operatorname{rank}(M) = \dim(V)$ where M denotes a matrix map of T.

Defn 2.5. Let $A \in \mathbb{F}^{n \times m}$. $B \in \mathbb{F}^{m \times n}$ is a left inverse of A if $BA = I_n$. If m = n, B is an inverse of A if $BA = AB = I_n$.

Defn 2.6. A matrix $A \in \mathbb{F}^{n \times n}$ is nonsingular (singular) if A is invertible (not invertible). A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric (skew-symmetric) if $A = A^{\mathrm{T}} (A = -A^{\mathrm{T}})$. For a matrix $A \in \mathbb{C}^{m \times n}$, $A^* \in \mathbb{C}^{n \times m}$ denotes the complexconjugate transpose of A given by $\overline{A}^{\mathrm{T}}$ where \overline{A} denotes the complex-conjugate matrix of A. A matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian (skew-Hermitian) if $A = A^* (A = -A^*)$.

Thrm 2.7. Let $A \in \mathbb{F}^{m \times n}$ and $b \in \mathbb{F}^m$. The following statements are equivalent:

- 1. Ax = b has a unique solution,
- 2. $\operatorname{rank}(A) = \operatorname{rank}([A \ b]) = n$,
- 3. $\mathcal{N}(A) = \{0\}.$

Thrm 2.8. Every invertible matrix can be written as a product of elementary matrices.

Defn 2.9. A function det: $\mathbb{F}^{n \times n} \to \mathbb{F}$ is *determinant* if *i*) it is linear in columns (or rows), *ii*) it is zero if two columns (or rows) are the same, and *iii*) det $(I_n) = 1$.

Defn 2.10. Let $A \in \mathbb{F}^{n \times n}$. (i, j)th minor $M_{ij}(A)$ is the $(n-1) \times (n-1)$ matrix with *i*th row and *j*th column removed from A. The (i, j)th cofactor $K_{ij}(A)$ is $(-1)^{i+j} \det(M_{ij}(A))$. The adjugate matrix $\operatorname{Adj}(A)$ the is $n \times n$ matrix with (i, j)th element $K_{ij}(A)$.

Thrm 2.11. Let $A \in \mathbb{F}^{n \times n}$. Then $det(A) = \sum A_{ij}K_{ij}(A)$ for any row or column.

Thrm 2.12. Let $A \in \mathbb{F}^{n \times n}$ and $\chi_A(x) = \det(xI_n - A)$. Then $\chi_A(A) = 0_{n \times n}$.