MA 102: Linear Algebra and Applied Analysis

Mid Term Examination II, March 27, 2015
Duration: 180 min, Maximum Marks: 100

Problem 1. (10 Marks)

(1.a) Consider the set S of all vectors in \mathbb{R}^{2} with usual addition but with the multiplication given by $c\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \\ c y\end{array}\right]$ for all $c, x, y \in \mathbb{R}$. Determine whether the set S forms a linear space. If it does not then state and justify which of the linear space axioms fail to hold.
(1.b) Let $V=\mathbb{R}^{2}$ and $W=\left\{\left[\begin{array}{c}a \\ |b|\end{array}\right] ; \quad a, b \in \mathbb{R}\right\}$. Check if W is a subspace of V.

Problem 2. (5 Marks)

Let V be the linear space of functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Determine whether the set $S \subset V$ is linearly independent where $S=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$. Compute $\operatorname{span}(S)$ and $\operatorname{dim}(\operatorname{span}(S))$.

Problem 3. (5 Marks)

Let V be an Euclidean space and let $x, y \in V$. Show that $\langle x, y\rangle=0$ if and only if $\|x+y\|^{2}=$ $\|x\|^{2}+\|y\|^{2}$.

Problem 4. (10 Marks)

Consider the set of three vectors $\{X, Y, Z\}$ in \mathbb{R}^{4} given by

$$
X=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
2
\end{array}\right], Y=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], Z=\left[\begin{array}{r}
-1 \\
-1 \\
2 \\
0
\end{array}\right]
$$

(i) Show that these three vectors are mutually orthogonal.
(ii) Find a vector W such that the set $\{X, Y, Z, W\}$ is a set of mutually orthogonal vectors.
(iii) Convert the resulting set into a mutually orthonormal basis.

Problem 5. (10 Marks)

Let V be the linear space of continuous functions $f:[0,2 \pi] \rightarrow \mathbb{R}$ with inner product $\langle f, g\rangle=\int_{0}^{2 \pi} f(x) g(x) \mathrm{d} x$. Let $f(x)=x^{2}$, find the element g nearest to f in the subspace spanned by the set $\{1, \cos (x)\}$.

Problem 6. (10 Marks)
Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y, z)=(x+z, x+y+2 z, 2 x+y+3 z)$.
(i) Find null space and range space of T and their respective dimensions.
(ii) Is T invertible?

Problem 7. (10 Marks)

Let V be the linear space of polynomials of degree ≤ 2. For $p \in V, T: V \rightarrow V$ is defined as $T(p)(x)=p(x-1)$ for all $x \in \mathbb{R}$. Is T linear? If T is linear then derive the matrix of this transformation with respect to standard ordered basis.

Problem 8. (5 Marks)

Compute inverse of the matrix $A=\left[\begin{array}{rrr}1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1\end{array}\right]$ using Gaussian elimination method.

Problem 9. (5 Marks)

Let $T \in \mathcal{L}(V, W)$. Prove that $\mathcal{N}(T)$ and $\mathcal{R}(T)$ are subspaces of V and W, respectively.
Problem 10. (30 Marks) Let V denote the set of all real sequences. That is, if $v \in V$ then $v_{1}, v_{2}, v_{3}, \ldots$ forms a real number sequence.
(1.a) Show that V is a vector space by proving the key properties listed in the summary sheet. Is V finite or infinite-dimensional? Justify your answer.
(1.b) Let $W \subseteq V$ be such that if $w \in W$ then

$$
\begin{equation*}
w_{n+2}=w_{n+1}+w_{n}, \quad \text { for all } n=0,1, \ldots \tag{Eq.1}
\end{equation*}
$$

Show that W is a subspace of V.
(1.c) Show that a sequence $x_{n}=\lambda^{n}, n=0,1,2, \ldots$ is an element of W if and only if $\lambda^{2}-\lambda-1=$ 0.
(1.d) Determine the two roots $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ of the polynomial $\lambda^{2}-\lambda-1$ and show that they are real and distinct. Next, let w be such that $w_{n}=c_{1} x_{n}+c_{2} y_{n}$ where $c_{1}, c_{2} \in \mathbb{R}$, $x_{n}=\lambda_{1}^{n}$, and $y_{n}=\lambda_{2}^{n}$. Show that $w \in W$ and express it in terms of $c_{1}, c_{2}, \lambda_{1}$, and λ_{2} by substituting the numerical values of λ_{1} and λ_{2}.
(1.e) Let $w \in W$. Prove the following two equations

$$
\begin{align*}
w_{n} & =\lambda_{1}^{n}\left(\frac{\lambda_{2} w_{0}-w_{1}}{\lambda_{2}-\lambda_{1}}\right)-\lambda_{2}^{n}\left(\frac{\lambda_{1} w_{0}-w_{1}}{\lambda_{2}-\lambda_{1}}\right) \\
& =w_{0}\left(\frac{\lambda_{1}^{n-1}-\lambda_{2}^{n-1}}{\lambda_{1}-\lambda_{2}}\right)+w_{1}\left(\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}\right) . \tag{Eq.2}
\end{align*}
$$

This can be shown by first, showing that (Eq.2) is trivially true for $n=0,1$ and then show that (Eq.1) holds if w satisfies (Eq.2). (Do not forget that the values of λ_{1} and λ_{2} are at your disposal).
(1.f) Using the previous part, determine a basis for W and compute the dimension of W.
(1.g) Let $F \in W$ be such that $F_{0}=F_{1}=1$. Using (Eq.1), compute F_{2}, \cdots, F_{7}. Identify this sequence. Show that

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right], n=0,1, \ldots
$$

(1.h) Let $w \in W$. Show that

$$
\begin{align*}
& {\left[\begin{array}{l}
w_{n} \\
w_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
w_{n-1} \\
w_{n}
\end{array}\right], \quad n=1,2, \ldots,} \tag{Eq.3}\\
& {\left[\begin{array}{l}
w_{n} \\
w_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]^{n}\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right], \quad n=0,1, \ldots} \tag{Eq.4}
\end{align*}
$$

(1.i) Let $a=\frac{1+\sqrt{5}}{2}, b=\frac{1-\sqrt{5}}{2}$,

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \quad S=\left[\begin{array}{rr}
b & 1 \\
-1 & b
\end{array}\right], \quad D=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] .
$$

Show that
(1) $a b=-1$,
(3) $S^{-1}=\frac{1}{a-b}\left[\begin{array}{rr}-1 & -a \\ a & -1\end{array}\right]$,
(2) $a+b=1$,
(4) $A=S D S^{-1}$.

Finally show that

$$
A^{n}=S D^{n} S^{-1}=\frac{1}{a-b}\left[\begin{array}{rr}
a^{n-1}-b^{n-1} & a^{n}-b^{n} \tag{Eq.5}\\
a^{n}-b^{n} & a^{n+1}-b^{n+1}
\end{array}\right] .
$$

(1.j) Substitute (Eq.5) into (Eq.4) and show that (Eq.4) and (Eq.2) are identical.

