1 First problem : about a family of 2-dimensional integrals

Let f be the function defined on $\mathbb{R}_{+}=[0,+\infty)$ by:

$$
\forall r>0, \quad f(r)=\int_{0}^{r} \mathrm{e}^{-u^{2}} \mathrm{~d} u
$$

and I be the function defined on \mathbb{R}_{+}by:

$$
\forall r>0, \quad I(r)=\iint_{[0, r] \times[0, r]} \mathrm{e}^{-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y
$$

We also define the domain $D_{r}=\left\{(x, y) \in\left(\mathbb{R}_{+}\right) \times\left(\mathbb{R}_{+}\right): 0 \leqslant x^{2}+y^{2} \leqslant r^{2}\right\}$.

1. On a drawing on your answer sheet, draw some domains D_{r}, for the three values $r=1, r=2$ and $r=4$.
2. By using Fubini's theorem, as seen in Prof. Satya's lectures, prove that, for any $r>0$,

$$
I(r)=(f(r))^{2}
$$

3. Prove quickly the following set inclusions (for any value $r>0$):

$$
\begin{equation*}
D(r) \subset([0, r] \times[0, r]) \subset D(\sqrt{2} r) \tag{1.1}
\end{equation*}
$$

4. On a new drawing, illustrate the previous result (for an abstract value $r>0$, not specified numerically on your drawing).
5. (Nothing to be proven here, just read and use that theorem after)

We admit the following result.

- Let \mathcal{A} be a 2-dimensional domain included in a bigger 2D domain $\mathcal{B}: \mathcal{A} \subset \mathcal{B}$.
- And consider $g: \mathcal{B} \longrightarrow \mathbb{R}$, a function which takes only non-negative values (i.e. $g(x, y) \geqslant 0$ for all (x, y) in its domain $\mathcal{B})$.
- Then the integral of g on the smaller domain \mathcal{A} is smaller than the integral of g on the bigger domain \mathcal{B} :

$$
\int_{\mathcal{A}} g(x, y) \mathrm{d} x \mathrm{~d} y \leqslant \int_{\mathcal{B}} g(x, y) \mathrm{d} x \mathrm{~d} y
$$

6. By using the given theorem (twice) and the last question (1.1), verify quickly but properly that the two following inequalities hold:

$$
\begin{equation*}
\iint_{D(r)} \mathrm{e}^{-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y \leqslant I(r) \leqslant \iint_{D(\sqrt{2} r)} \mathrm{e}^{-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y \tag{1.2}
\end{equation*}
$$

7. By using a change of variable (from Cartesian to polar coordinates), evaluate the two bounds of the previous inequality.
You should get a value for $\iint_{D(r)} \mathrm{e}^{-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y$ and a value for $\iint_{D(\sqrt{2} r)} \mathrm{e}^{-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y$, both depending on the radius r.
8. Thanks to the squeezing theorem for real-value functions (of the variable r), the values you got on the last question $\sqrt[7]{7}$ and the inequalities 1.2 , find the limit for $I(r)$ when $r \longrightarrow+\infty$.

2 About multi-variable functions

2.1 Continuity

Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function given by:

$$
f(x, y)=\left\{\begin{array}{cl}
(x-y) \cos \left(\frac{1}{x+y}\right) & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

That function is still not correctly defined. What should I change?
Show that f is continuous at the point $(0,0)$.

2.2 Non-continuity

Let $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function given by:

$$
g(x, y)=\left\{\begin{array}{cc}
\frac{x+y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Show that g is not continuous at the point $(0,0)$.

2.3 A more complicated example of continuity

Let L be the domain $\left\{(x, y) \in \mathbb{R}^{2}: x=y\right\}$ (i.e. the line $y=x$).
Then let U be the domain $U=\mathrm{R}^{2} \backslash L=\left\{(x, y) \in \mathbb{R}^{2}: x \neq y\right\}$.
Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function given by:

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{\sin (x)-\sin (y)}{x-y} & \text { if }(x, y) \in D(\text { ie if } x \neq y) \\
\cos (x) & \text { if }(x, y) \in U(\text { ie if } x=y)
\end{array}\right.
$$

By using the théorème des accroissements finis, show that f is not continuous at the point $(0,0)$.

2.4 TODO: one more problem

We need one more question one directional derivative, partial derivative, and differentiability.

3 A simple 2-dimensional integral

Compute that integral carefully:

$$
\iint_{\mathcal{A}} x^{2} \mathrm{~d} x \mathrm{~d} y
$$

Where the region \mathcal{A} is given as $\mathcal{A}=\left\{(x, y) \in \mathbb{R}^{2}: x \geqslant 0,1 \leqslant x^{2}+y^{2} \leqslant 2\right\}$.

4 A second 2-dimensional integral

Compute that other integral (and do it carefully):

$$
\iint_{\mathcal{B}} x \cos (x) \mathrm{d} x \mathrm{~d} y
$$

Where the region \mathcal{B} is the triangle given by the three points $(0,0),(\pi, 0)$ and (π, π).
Is it enough to be unambiguous?

5 Computing a $2 D$ area

Compute the area of the domain D given by $D=\left\{(x, y) \in \mathbb{R}^{2}: y \leqslant x \leqslant y^{2}, 1 \leqslant y \leqslant 2\right\}$.

6 Computing a volume

Compute the volume defined by these equations and inequalities:

$$
\left\{\begin{array}{l}
z \geqslant 0 \\
x^{2}+y^{2}=x \\
x^{2}+y^{2}+z^{2}=1
\end{array}\right.
$$

Is it enough to be unambiguous?

