MA 102: Linear Algebra and Multi-variable Calculus
 Mahindra École Centrale
 Duration: 3 hours | Final Semester Examination | Total 100 marks

April the 5th, 2015

Problem IV: Lagrange polynomial interpolation

(Marks: 20)

This last problem is focusing on the Lagrange polynomials for an interpolation problem. Let f be a function of the real variable: $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x)$. We are looking for polynomials (of degree $\leqslant n$) taking the same values as this function f at $(n+1)$ points x_{0}, \ldots, x_{n} (all distinct).

The problem is long, but the questions can all be answered quickly (but with rigor and justification, of course). The underlined parts help you to identify what you should do.

Problem IV: Part 1

Let $n \in \mathbb{N}, x_{0}, \ldots, x_{n} \in \mathbb{C}$ all distinct. n and the x_{i} are constants in all this part.
Q.IV.1.1) We are looking for $(n+1)$ polynomials L_{0}, \ldots, L_{n}, all of degree $\leqslant n$, satisfying:

$$
\begin{gather*}
\forall 0 \leqslant i \leqslant n, \quad L_{i}\left(x_{i}\right)=1 . \tag{1}\\
\forall 0 \leqslant i, j \leqslant n, \quad i \neq j \Longrightarrow L_{i}\left(x_{j}\right)=0 . \tag{2}
\end{gather*}
$$

In this question, let i be one integer such that $0 \leqslant i \leqslant n$.
Q.IV.1.1.a) Thanks to the first condition (1), show that there exists a unique constant $C_{i} \in \mathbb{C}$ such that:

$$
L_{i}(x)=C_{i} \times \prod_{0 \leqslant j \leqslant n, j \neq i}\left(x-x_{j}\right)
$$

Q.IV.1.1.b) Thanks to the second condition $\sqrt[2]{2}\left(L_{i}\left(x_{i}\right)=1\right)$, give the value of this constant $C_{i} \in \mathbb{C}$.

Note: if you are unable to get this value, you can use the symbol C_{i} in the rest of the problem.
Q.IV.1.2) So in fact, Q.IV.1.1) just proved that if L_{0}, \ldots, L_{n} are $(n+1)$ polynomials of degrees $\leqslant n$, satisfying (1) and (2), then necessarily there exists $(n+1)$ constants C_{0}, \ldots, C_{n} such that:

$$
\forall 0 \leqslant i \leqslant n, \quad \forall x \in \mathbb{R}, \quad L_{i}(x)=C_{i} \times \prod_{0 \leqslant j \leqslant n, j \neq i}\left(x-x_{j}\right) .
$$

Conversely, justify quickly that, with the values of C_{i} found in Q.IV.1.1.b), this family L_{0}, \ldots, L_{n} is satisfying the two conditions.
So we have proved the existence and uniqueness of a family L_{0}, \ldots, L_{n} satisfying both (1) and (2).
Q.IV.1.3) Let V be the (complex) vector space of the (complex) polynomials, of degree $\leqslant n$.
(Note: we do not ask you to justify that V is a vector space.)
Q.IV.1.3.a) Without justifying, give the dimension ${ }^{11}$ of this vector space V.
Q.IV.1.3.b) Similarly, without justification, give a basis for the vector space V.

[^0]Q.IV.1.4) Let us prove existence and uniqueness of the Lagrange polynomials:
Q.IV.1.4.a) By using the conditions (1) and (22), show that ${ }^{2}$ the family L_{0}, \ldots, L_{n} (seen as vectors of the linear space V) is linearly independent.
Q.IV.1.4.b) Justify quickly but carefully that the family L_{0}, \ldots, L_{n} is a basis of V.

This unique family of polynomials L_{0}, \ldots, L_{n} are called the Lagrange polynomials of order n, for the interpolation problem at the points x_{0}, \ldots, x_{n}.

Problem IV: Part 2

Q.IV.1.1) Let $n \in \mathbb{N}, x_{0}, \ldots, x_{n} \in \mathbb{C}$ all distinct, and $y_{0}, \ldots, y_{n} \in \mathbb{C}$ be $(n+1)$ complex values. n and the x_{i} are constants in all this part.
We are looking for a polynomial $P \in V$ that is satisfying $P\left(x_{i}\right)=y_{i}, \forall 0 \leqslant i \leqslant n$.
Q.IV.2.1.a) Let $t \in \mathbb{R}$ be any real number. By using what we already know about these polynomials L_{0}, \ldots, L_{n}, prove that

$$
P(t)=\sum_{i=0}^{n} P\left(x_{i}\right) L_{i}(t)
$$

Hint: You could evaluate both sides on certain points of your choice, and use the fact that both sides are polynomial expressions (think about their degree!).
Q.IV.2.1.b) Thanks to the previous result, quickly conclude that we now have the following result:
$\forall n \in \mathbb{N}, \forall x_{0}, \ldots, x_{n} \in \mathbb{C}\left(\right.$ all distinct), $\forall y_{0}, \ldots, y_{n} \in \mathbb{C}$, there exists one and only (complex) polynomial P of degree $\leqslant n$, and which satisfies $\forall 0 \leqslant i \leqslant n, P\left(x_{i}\right)=y_{i}$.
Give its expression, ie. for $t \in \mathbb{R}$, what is $P(t)$?
Q.IV.1.2) Now let $f: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto f(t), n \in \mathbb{N}, x_{0}, \ldots, x_{n} \in \mathbb{R}$ all distinct.

Define a good family of values $y_{0}, \ldots, y_{n} \in \mathbb{R}$, in order to use the previous result (Q.IV.2.1.b) and prove that there exists a unique polynomial P of degree $\leqslant n$ which satisfies $P\left(x_{i}\right)=f\left(x_{i}\right) \forall 0 \leqslant i \leqslant n$.
Let us write $L_{f, n}$ for this polynomial P. It is called the interpolation polynomial of f at the order n, at the points x_{0}, \ldots, x_{n}.
Q.IV.1.3) Here, we are considering some examples of Lagrange polynomial, for small values of $n \in \mathbb{N}$:

- Give the expression of $L_{f, 0}(t)$ and its degree.
- Give the expression of $L_{f, 1}(t)$ (and its degree). What is the condition for its degree to be exactly 1 ?
- Give an example of $f: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto f(t)$, and x_{0}, x_{1}, such that $L_{f, 1}(t)$ is not of degree 1 .
- Give the expression of $L_{f, 2}(t)$ (and its degree).

Similarly, find a simple example of points x_{0}, x_{1}, x_{2} and f such that this polynomial $L_{f, 2}(t)$ is not of degree 2 .
Q.IV.1.4) Writing the monomial terms $\left(t^{k}\right)$ in the Lagrange basis:
Q.IV.1.5.a) Compute the sum $\sum_{i=0}^{n} L_{i}(t)$ for any real number $t \in \mathbb{R}$.
Q.IV.1.5.b) Similarly, show that:

$$
\forall t \in \mathbb{R}, \forall 0 \leqslant k \leqslant n, t^{k}=\sum_{i=0}^{n} x_{i}^{k} L_{i}(t)
$$

Hint: try to apply the result of the question Q.IV.2.1.b) to the polynomial $P(t)=t^{k}$.
Q.IV.1.5.c) These equations show that, for all $0 \leqslant k \leqslant n$, the vector t^{k} (of the linear space V) can be written as the vector $\left[x_{i}^{k}\right]_{0 \leqslant i \leqslant n}=\left[x_{i}^{0}, x_{i}^{1}, \ldots, x_{i}^{n}\right]=\left[1, x_{i}, \ldots, x_{i}^{n}\right]$ in the basis L_{0}, \ldots, L_{n}.
Write the matrix of change of bases, from the basis $\left(L_{i}\right)_{0 \leqslant i \leqslant n}$ to the basis $\left(t^{k}\right)_{0 \leqslant k \leqslant n}$.
What is its size?

[^1](End of the problem.)

- TODO: proof-read and conclude.
- TODO: remove some hints?

[^0]: ${ }^{1}$ Hint: think carefully about your answer. If you are unsure, check with some example values, like $n=0$ or $n=1$.

[^1]: ${ }^{2}$ Hint: Write a linear combination of the L_{j}, and try to evaluate it at the points x_{i}.

