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Linear Spaces and Subspaces

Linear Spaces

◮ Closure, Associativity, Commutativity, Additive Identity &
Inverse etc

◮ The scalars can be real or complex numbers (in general, any
field)

Subspaces

◮ Subspace is a subset of a vector space which is a vector space
itself

◮ Fact: Given a subset of a vector space, closure axioms are
sufficient to check if a subset is a subspace



Independence, Basis, and Dimension

Dependent and Independent Sets

◮ If
n
∑

i=1
civi = 0 (with not all zero ci) then the set {v1, . . . , v2}

is dependent

◮ If
n
∑

i=1
civi = 0 implies ci = 0 then {v1, . . . , v2} is independent

◮ Span of a set S is the set of all finite linear combinations of
elements of S

Basis and Dimension

◮ An independent set S is a basis for a linear space V if
span(S) = V

◮ The number of elements of basis is dimension of the linear
space



Facts on Basis and Dimension

◮ Fact: If n = dim(V ) then every set with m > n elements is
dependent

◮ Fact: If n = dim(V ) then every independent set with n

elements is basis

◮ Fact: If n = dim(V ) then every independent set with m < n

elements can be extended into a basis

Examples

◮ R
3: Unit vectors in x, y, and z-axis form the canonical basis

◮ Set of polynomials: {1, x, x2, · · · } forms a basis of this
infinite-dimensional space



Inner Products and Norms

Inner Product

◮ 〈·, ·〉 : V × V → R is inner product on V if i) 〈x, y〉 = 〈y, x〉,
ii) 〈cx, y〉 = c〈x, y〉, iii) 〈x, x〉 > 0, x 6= 0,
iv) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

Euclidean Norm

◮ ‖x‖ = 〈x, x〉
1

2 : i) ‖cx‖ = c‖x‖, ii) ‖x‖ > 0 for x 6= 0,
iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Cauchy-Schwarz Inequality

◮ |〈x, y〉| ≤ 〈x, x〉
1

2 〈y, y〉
1

2

◮ |〈x, y〉| ≤ ‖x‖‖y‖

◮ Equality holds iff x, y are dependent



Orthogonality

Orthogonality and Orthonormal Basis

◮ x is orthogonal to y (x ⊥ y) if 〈x, y〉 = 0

◮ A set is orthogonal if all elements are mutually orthogonal

◮ An orthogonal set is orthonormal if every element has unit
norm

◮ An orthonormal set that is a basis is an orthonormal basis

Key Facts

◮ Fact: Every orthogonal set with nonzero elements is
independent

◮ Fact: Gram-Schmidt algorithm generates orthogonal sets



Linear Maps and Operators

Definitions

◮ T : V → W is a linear map if T (x+ y) = T (x) + T (y) and
T (cx) = cT (x). If V = W then T is a linear operator

◮ N (T ) ⊆ V is the null space of T given be {x ∈ V : T (x) = 0}

◮ R(T ) ⊆ W is the range space of T given be
{y ∈ W : y = T (x), x ∈ V }

◮ dim(N (T )) is the nullity or defect of T

◮ dim(R(T )) is the rank of T



Key Facts on Linear Maps

Key Results

◮ Fact: N (T ) and R(T ) are subspaces of V and W ,
respectively

◮ Rank-Nullity Theorem: dim(N (T )) + dim(R(T )) = dim(V )

◮ Fact: If T is one-to-one (that is, N (T ) = {0}) then
dim(W ) ≥ dim(V )

◮ Fact: If T is onto (that is, R(T ) = W ) then
dim(W ) ≤ dim(V )

◮ Fact: If T is invertible (one-to-one & onto) then
dim(W ) = dim(V )
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System of Linear Equations

Existence and Uniqueness

◮ Let A ∈ R
m×n and b ∈ R

m

◮ Fact: Ax = b has a solution if and only if
rank(A) = rank([A b])

◮ Fact: Ax = b has a unique solution iff N (A) = {0} iff
rank(A) = rank([A b]) = n

◮ Fact: If m = n, Ax = b has a unique solution iff A is
invertible

Facts on Rank

◮ Fact: rank(AB) ≤ min{rank(A), rank(B)}

◮ Fact: rank(AB) = rank(A) if B has full rank



Gaussian Elimination

Solution Techniques and Related Concepts

◮ Gaussian elimination: elementary row operations, forward and
backward substitutions

◮ Fact: Elementary row operations are equivalent to
multiplication by elementary matrices

◮ Fact: Inverse of an elementary matrix is an elementary matrix

◮ Fact: Permutation matrices are idempotent (P 2 = I)

◮ Fact: Every invertible matrix can be written as a product of
elementary matrices



Types of Matrices

◮ Diagonal, triangular, block-diagonal, block-triangular

◮ Symmetric: A = AT, skew-symmetric: A = −AT

◮ Hermitian: A = A∗, skew-Hermitian: A = −A∗

◮ Idempotent: A2 = I, nilpotent: Ak = 0 for some k ≥ 1

◮ Normal: ATA = AAT or A∗A = AA∗

◮ Orthogonal (orthonormal?): ATA = AAT = I

◮ Unitary: A∗A = AA∗ = I

◮ Positive (nonnegative) definite: A > 0 (A ≥ 0) if A is
Hermitian and x∗Ax > 0, x 6= 0 (x∗Ax ≥ 0)



Determinant and Eigenvalues

Determinant

◮ Fact: det(A) = 0 iff A is singular

◮ Fact: det(A) 6= 0 iff A is invertible

◮ Fact: Let A ∈ F
n×m, B ∈ F

m×n, and λ ∈ F

λmdet(λIn +AB) = λndet(λIm +BA)

Eigenvalues, Eigenvectors, & Singular Values

◮ If Ax = λx for x 6= 0 then λ is eigenvalue, x is eigenvector

◮ σ is a singular value of A if σ2 ∈ spec(A∗A)

◮ Fact: λ ∈ spec(A) iff det(λI −A) = 0

◮ Fact: If λ ∈ spec(A) then λn ∈ spec(An) for all n ≥ 1



Matrix Diagonalizability

Diagonalizability

◮ A is diagonalizable if A = XΛX−1 for Λ diagonal and
nonsingular X

◮ Fact: In this case, elements of Λ are eigenvalues, columns of
X are corresponding eigenvectors

◮ Fact: A ∈ F
n×n is diagonalizable iff A has n independent

eigenvectors

◮ Fact: If A has n distinct eigenvalues then A is diagonalizable

◮ Fact: If A is normal then A is diagonalizable

◮ Remark: A need not have distinct eigenvalues for
diagonalizability (consider In)



Matrix Decompositions

Decompositions

◮ Schur Decomposition: A = SUS∗, S is unitary and U is
upper triangular

◮ Singular Value Decomposition: A = UΣV ∗, where U, V are
unitary, Σ is diagonal with elements as singular values

◮ Jordan Canonical Form: A = SJS∗, where S is unitary,
J = block− diag(J1, . . . , Jm), Ji is a scalar block if λi is not
repeated. Otherwise, Ji = λiI +Ni, where Ni is nilpotent

◮ Polar Decomposition: A = MU where M ≥ 0 and U is
unitary

◮ Euler’s Identity: A = MejΘ where M ≥ 0 and Θ is Hermitian



The Cayley-Hamilton Theorem

The Cayley-Hamilton Theorem

◮ Let the characteristic polynomial be given by
χA(λ) = det(λI −A)

◮ Then χA(A) = 0

◮ Corollary: Given A ∈ F
n×n and k ≥ 0,

An+k = c0I + c1A+ c2A
2 + · · · + cn−1A

n−1

◮ Fact: If p(·) is a polynomial then
p(A) = Xp(Λ)X−1 = Sp(U)S∗ = Sp(J)S∗



Facts on Hermitian Matrices

Key Results

◮ Fact: Eigenvalues of symmetric (Hermitian) matrices are real

◮ Fact: Eigenvalues of skew-symmetric (skew-Hermitian)
matrices are imaginary

◮ Fact: Eigenvalues of orthogonal or unitary matrices has unit
magnitude

◮ Fact: Eigenvalues of positive definite matrices are positive

◮ Fact: A ∈ R
2×2 is positive definite iff A is symmetric,

tr(A) > 0, and det(A) > 0
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Matrix Exponential

Definition and Key Facts

◮ Let A ∈ F
n×n. Then

eA =

∞
∑

n=0

An

n!
= I +A+

A2

2!
+ · · ·+

An

n!
+ · · ·

◮ Fact: eλI = eλI =⇒ e0n×n = In

◮ Fact: e(x+y)A = exAeyA =⇒ eAe−A = I

◮ Fact: ddte
At = AeAt = eAtA

◮ Fact: If AB = BA then eA+B = eAeB = eBeA



Matrix Exponential Evaluation

Key Methods

◮ Fact: If A = XΛX−1 then eA = XeΛX−1

◮ Fact: If Nk = 0 then e(λI+N)t = eλt
k−1
∑

i=0

N iti

i!

n−1
∑

i=0

Nntn

n!
=













0 t · · · tn−1

(n−1)!

0 0 · · · tn−2

(n−2)!
...

...
...

...
0 0 0 0













.



Vector Differential Equations I

The Homogeneous Case

◮ Fact: ẋ(t) = Ax(t), x(0) = x0 has a unique solution
x(t) = eAtx0

◮ Fact: x(t) → 0 as t → ∞ iff Re(λ) < 0 ∀ λ ∈ spec(A)

◮ Fact: For A ∈ R
2×2, Re(λ) < 0 iff tr(A) < 0 and det(A) > 0

◮ Fact: If A has only imaginary eigenvalues then x(t) will be
harmonic



Vector Differential Equations II

The Nonhomogeneous Case

◮ Fact: ẋ(t) = Ax(t) +Bu(t), x(0) = x0 has a unique solution

x(t) = eAtx0 +

t
∫

0

eA(t−τ)Bu(τ)dτ

◮ Fact: If u(t) = sin(ωt) and ıω ∈ spec(A) then resonance
occurs



The State-Space Approach I

Second-Order Differential Equation

◮ Fact: ẍ(t) + aẋ(t) + bx(t) = 0 can be transformed to

[

ẋ1(t)
ẋ2(t)

]

=

[

0 1
−b −c

] [

x1(t)
x2(t)

]

,

where x1 = x and x2 = ẋ



The State-Space Approach II

Higher-Order Differential Equation

◮ Fact: x(n)(t) + an−1x
(n−1)(t) + · · ·+ a1ẋ(t) + a0x(t) = 0 can

be transformed to










ẋ1(t)
ẋ2(t)
...

ẋn(t)











=











0 1 · · · 0
0 0 1 · · ·
...

...
...

...
−a0 −a1 · · · −an−1





















x1(t)
x2(t)
...

xn(t)











,

where x1 = x, x2 = ẋ, . . ., xn = x(n−1)
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