MA 102: Linear Algebra and Analysis Key Concepts and Results

Professor Vijaysekhar Chellaboina

Mahindra École Centrale

April 30, May 01, 2015

Outline

Linear Algebra

Matrix Mathematics

System of Linear Differential Equations

Linear Spaces and Subspaces

Mahindra École Centrale COLIEGE OF ENGINEERING

Linear Spaces

- Closure, Associativity, Commutativity, Additive Identity \& Inverse etc
- The scalars can be real or complex numbers (in general, any field)

Subspaces

- Subspace is a subset of a vector space which is a vector space itself
- Fact: Given a subset of a vector space, closure axioms are sufficient to check if a subset is a subspace

Independence, Basis, and Dimension

Dependent and Independent Sets

- If $\sum_{i=1}^{n} c_{i} v_{i}=0$ (with not all zero c_{i}) then the set $\left\{v_{1}, \ldots, v_{2}\right\}$ is dependent
- If $\sum_{i=1}^{n} c_{i} v_{i}=0$ implies $c_{i}=0$ then $\left\{v_{1}, \ldots, v_{2}\right\}$ is independent
- Span of a set S is the set of all finite linear combinations of elements of S

Basis and Dimension

- An independent set S is a basis for a linear space V if $\operatorname{span}(S)=V$
- The number of elements of basis is dimension of the linear space

Facts on Basis and Dimension

- Fact: If $n=\operatorname{dim}(V)$ then every set with $m>n$ elements is dependent
- Fact: If $n=\operatorname{dim}(V)$ then every independent set with n elements is basis
- Fact: If $n=\operatorname{dim}(V)$ then every independent set with $m<n$ elements can be extended into a basis

Examples

- \mathbb{R}^{3} : Unit vectors in x, y, and z-axis form the canonical basis
- Set of polynomials: $\left\{1, x, x^{2}, \cdots\right\}$ forms a basis of this infinite-dimensional space

Inner Products and Norms

Inner Product

Mahindra

École Centrale

- $\langle\cdot, \cdot \cdot\rangle: V \times V \rightarrow \mathbb{R}$ is inner product on V if $i)\langle x, y\rangle=\langle y, x\rangle$,
ii) $\langle c x, y\rangle=c\langle x, y\rangle$, iii) $\langle x, x\rangle>0, x \neq 0$, iv) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$

Euclidean Norm

- $\left.\left.\|x\|=\langle x, x\rangle^{\frac{1}{2}}: i\right)\|c x\|=c\|x\|, i i\right)\|x\|>0$ for $x \neq 0$, iii) $\|x+y\| \leq\|x\|+\|y\|$

Cauchy-Schwarz Inequality

- $|\langle x, y\rangle| \leq\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}$
- $|\langle x, y\rangle| \leq\|x\|\|y\|$
- Equality holds iff x, y are dependent

Orthogonality

Orthogonality and Orthonormal Basis

- x is orthogonal to $y(x \perp y)$ if $\langle x, y\rangle=0$
- A set is orthogonal if all elements are mutually orthogonal
- An orthogonal set is orthonormal if every element has unit norm
- An orthonormal set that is a basis is an orthonormal basis

Key Facts

- Fact: Every orthogonal set with nonzero elements is independent
- Fact: Gram-Schmidt algorithm generates orthogonal sets

Linear Maps and Operators

Definitions

- $T: V \rightarrow W$ is a linear map if $T(x+y)=T(x)+T(y)$ and $T(c x)=c T(x)$. If $V=W$ then T is a linear operator
- $\mathcal{N}(T) \subseteq V$ is the null space of T given be $\{x \in V: T(x)=0\}$
- $\mathcal{R}(T) \subseteq W$ is the range space of T given be $\{y \in W: y=T(x), x \in V\}$
- $\operatorname{dim}(\mathcal{N}(T))$ is the nullity or defect of T
- $\operatorname{dim}(\mathcal{R}(T))$ is the rank of T

Key Facts on Linear Maps

Key Results

- Fact: $\mathcal{N}(T)$ and $\mathcal{R}(T)$ are subspaces of V and W, respectively
- Rank-Nullity Theorem: $\operatorname{dim}(\mathcal{N}(T))+\operatorname{dim}(\mathcal{R}(T))=\operatorname{dim}(V)$
- Fact: If T is one-to-one (that is, $\mathcal{N}(T)=\{0\}$) then $\operatorname{dim}(W) \geq \operatorname{dim}(V)$
- Fact: If T is onto (that is, $\mathcal{R}(T)=W$) then $\operatorname{dim}(W) \leq \operatorname{dim}(V)$
- Fact: If T is invertible (one-to-one \& onto) then $\operatorname{dim}(W)=\operatorname{dim}(V)$

Outline

Linear Algebra

Matrix Mathematics

System of Linear Differential Equations

System of Linear Equations

Existence and Uniqueness

- Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$
- Fact: $A x=b$ has a solution if and only if $\operatorname{rank}(A)=\operatorname{rank}\left(\left[\begin{array}{ll}A & b\end{array}\right)\right.$
- Fact: $A x=b$ has a unique solution iff $\mathcal{N}(A)=\{0\}$ iff $\operatorname{rank}(A)=\operatorname{rank}([A b])=n$
- Fact: If $m=n, A x=b$ has a unique solution iff A is invertible

Facts on Rank

- Fact: $\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$
- Fact: $\operatorname{rank}(A B)=\operatorname{rank}(A)$ if B has full rank

Gaussian Elimination

Solution Techniques and Related Concepts

- Gaussian elimination: elementary row operations, forward and backward substitutions
- Fact: Elementary row operations are equivalent to multiplication by elementary matrices
- Fact: Inverse of an elementary matrix is an elementary matrix
- Fact: Permutation matrices are idempotent $\left(P^{2}=I\right)$
- Fact: Every invertible matrix can be written as a product of elementary matrices

Types of Matrices

- Diagonal, triangular, block-diagonal, block-triangular
- Symmetric: $A=A^{\mathrm{T}}$, skew-symmetric: $A=-A^{\mathrm{T}}$
- Hermitian: $A=A^{*}$, skew-Hermitian: $A=-A^{*}$
- Idempotent: $A^{2}=I$, nilpotent: $A^{k}=0$ for some $k \geq 1$
- Normal: $A^{\mathrm{T}} A=A A^{\mathrm{T}}$ or $A^{*} A=A A^{*}$
- Orthogonal (orthonormal?): $A^{\mathrm{T}} A=A A^{\mathrm{T}}=I$
- Unitary: $A^{*} A=A A^{*}=I$
- Positive (nonnegative) definite: $A>0(A \geq 0)$ if A is Hermitian and $x^{*} A x>0, x \neq 0\left(x^{*} A x \geq 0\right)$

Determinant and Eigenvalues

Determinant

- Fact: $\operatorname{det}(A)=0$ iff A is singular
- Fact: $\operatorname{det}(A) \neq 0$ iff A is invertible
- Fact: Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times n}$, and $\lambda \in \mathbb{F}$

$$
\lambda^{m} \operatorname{det}\left(\lambda I_{n}+A B\right)=\lambda^{n} \operatorname{det}\left(\lambda I_{m}+B A\right)
$$

Eigenvalues, Eigenvectors, \& Singular Values

- If $A x=\lambda x$ for $x \neq 0$ then λ is eigenvalue, x is eigenvector
- σ is a singular value of A if $\sigma^{2} \in \operatorname{spec}\left(A^{*} A\right)$
- Fact: $\lambda \in \operatorname{spec}(A)$ iff $\operatorname{det}(\lambda I-A)=0$
- Fact: If $\lambda \in \operatorname{spec}(A)$ then $\lambda^{n} \in \operatorname{spec}\left(A^{n}\right)$ for all $n \geq 1$

Matrix Diagonalizability

Diagonalizability

- A is diagonalizable if $A=X \Lambda X^{-1}$ for Λ diagonal and nonsingular X
- Fact: In this case, elements of Λ are eigenvalues, columns of X are corresponding eigenvectors
- Fact: $A \in \mathbb{F}^{n \times n}$ is diagonalizable iff A has n independent eigenvectors
- Fact: If A has n distinct eigenvalues then A is diagonalizable
- Fact: If A is normal then A is diagonalizable
- Remark: A need not have distinct eigenvalues for diagonalizability (consider I_{n})

Matrix Decompositions

Decompositions

- Schur Decomposition: $A=S U S^{*}, S$ is unitary and U is upper triangular
- Singular Value Decomposition: $A=U \Sigma V^{*}$, where U, V are unitary, Σ is diagonal with elements as singular values
- Jordan Canonical Form: $A=S J S^{*}$, where S is unitary, $J=\operatorname{block}-\operatorname{diag}\left(J_{1}, \ldots, J_{m}\right), J_{i}$ is a scalar block if λ_{i} is not repeated. Otherwise, $J_{i}=\lambda_{i} I+N_{i}$, where N_{i} is nilpotent
- Polar Decomposition: $A=M U$ where $M \geq 0$ and U is unitary
- Euler's Identity: $A=M e^{j \Theta}$ where $M \geq 0$ and Θ is Hermitian

The Cayley-Hamilton Theorem

The Cayley-Hamilton Theorem

- Let the characteristic polynomial be given by
$\chi_{A}(\lambda)=\operatorname{det}(\lambda I-A)$
- Then $\chi_{A}(A)=0$
- Corollary: Given $A \in \mathbb{F}^{n \times n}$ and $k \geq 0$,

$$
A^{n+k}=c_{0} I+c_{1} A+c_{2} A^{2}+\cdots+c_{n-1} A^{n-1}
$$

- Fact: If $p(\cdot)$ is a polynomial then

$$
p(A)=X p(\Lambda) X^{-1}=S p(U) S^{*}=S p(J) S^{*}
$$

Facts on Hermitian Matrices

Key Results

- Fact: Eigenvalues of symmetric (Hermitian) matrices are real
- Fact: Eigenvalues of skew-symmetric (skew-Hermitian) matrices are imaginary
- Fact: Eigenvalues of orthogonal or unitary matrices has unit magnitude
- Fact: Eigenvalues of positive definite matrices are positive
- Fact: $A \in \mathbb{R}^{2 \times 2}$ is positive definite iff A is symmetric, $\operatorname{tr}(A)>0$, and $\operatorname{det}(A)>0$

Outline

Linear Algebra

Matrix Mathematics

System of Linear Differential Equations

Matrix Exponential

Definition and Key Facts

- Let $A \in \mathbb{F}^{n \times n}$. Then

$$
e^{A}=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}=I+A+\frac{A^{2}}{2!}+\cdots+\frac{A^{n}}{n!}+\cdots
$$

- Fact: $e^{\lambda I}=e^{\lambda} I \Longrightarrow e^{0_{n \times n}}=I_{n}$
- Fact: $e^{(x+y) A}=e^{x A} e^{y A} \Longrightarrow e^{A} e^{-A}=I$
- Fact: $\frac{\mathrm{d}}{\mathrm{d} t} e^{A t}=A e^{A t}=e^{A t} A$
- Fact: If $A B=B A$ then $e^{A+B}=e^{A} e^{B}=e^{B} e^{A}$

Matrix Exponential Evaluation

Key Methods

- Fact: If $A=X \Lambda X^{-1}$ then $e^{A}=X e^{\Lambda} X^{-1}$
- Fact: If $N^{k}=0$ then $e^{(\lambda I+N) t}=e^{\lambda t} \sum_{i=0}^{k-1} \frac{N^{i} t^{i}}{i!}$

$$
\sum_{i=0}^{n-1} \frac{N^{n} t^{n}}{n!}=\left[\begin{array}{cccc}
0 & t & \cdots & \frac{t^{n-1}}{(n-1)!} \\
0 & 0 & \cdots & \frac{t^{n-2}}{(n-2)!} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Vector Differential Equations I

The Homogeneous Case

- Fact: $\dot{x}(t)=A x(t), x(0)=x_{0}$ has a unique solution $x(t)=e^{A t} x_{0}$
- Fact: $x(t) \rightarrow 0$ as $t \rightarrow \infty$ iff $\operatorname{Re}(\lambda)<0 \forall \lambda \in \operatorname{spec}(A)$
- Fact: For $A \in \mathbb{R}^{2 \times 2}, \operatorname{Re}(\lambda)<0$ iff $\operatorname{tr}(A)<0$ and $\operatorname{det}(A)>0$
- Fact: If A has only imaginary eigenvalues then $x(t)$ will be harmonic

Vector Differential Equations II

The Nonhomogeneous Case

- Fact: $\dot{x}(t)=A x(t)+B u(t), x(0)=x_{0}$ has a unique solution

$$
x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau
$$

- Fact: If $u(t)=\sin (\omega t)$ and $\imath \omega \in \operatorname{spec}(A)$ then resonance occurs

The State-Space Approach I

Second-Order Differential Equation

- Fact: $\ddot{x}(t)+a \dot{x}(t)+b x(t)=0$ can be transformed to

$$
\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-b & -c
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right],
$$

where $x_{1}=x$ and $x_{2}=\dot{x}$

The State-Space Approach II

Higher-Order Differential Equation

- Fact: $x^{(n)}(t)+a_{n-1} x^{(n-1)}(t)+\cdots+a_{1} \dot{x}(t)+a_{0} x(t)=0$ can be transformed to

$$
\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t) \\
\vdots \\
\dot{x}_{n}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
-a_{0} & -a_{1} & \cdots & -a_{n-1}
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]
$$

where $x_{1}=x, x_{2}=\dot{x}, \ldots, x_{n}=x^{(n-1)}$

