MA 101: Key Concepts and Results

Vijaysekhar Chellaboina
Professor
Mahindra École Centrale

November 27-28 14, 2014

Real Numbers \mathbb{R}

Basics

- Operations:,$+ \times,-, \div$, identities: 0,1
- Relational: $<, \leq,>, \geq$
- Concepts: bounded, max, sup, inf, min, absolute value
- Subsets: Integers \mathbb{N}, rationals \mathbb{Q}, and irrationals $\mathbb{R} \backslash \mathbb{Q}$

Key results

- Every two numbers will satisfy either $x<y, y<x$, or $x=y$
- Every upper bounded set has a supremum
- Rationals are dense in \mathbb{R}; so are irrationals
- $x^{2}=2$ has solutions in $\mathbb{R} \backslash \mathbb{Q}$; No solution in \mathbb{R} for $x^{2}+1=0$

Complex Numbers \mathbb{C}

Basics

- Starts with \imath, the solution to $x^{2}+1=0$
- Operations:,$+ \times,-, \div$; identities: 0,1
- No relational operators
- Concepts: Modulus/absolute value, argument/phase
- Subsets: Real numbers \mathbb{R}, Imaginary numbers

Key results

- $z=|z| e^{\imath \theta}$ where $\theta=\arg (z)$ (what is $\arg (z) ?$)
- Euler's identity: $e^{\imath \theta}=\cos (\theta)+\imath \sin (\theta)$
- If $z^{n}=1$ then $z^{n}=e^{22 k \pi}, k \in \mathbb{N}$. Hence, $z=e^{2 \frac{2 k \pi}{n}}, k \in \mathbb{N}$

Sequences

Basics

- A sequence is a function $f: \mathbb{N} \rightarrow \mathbb{R}$ or \mathbb{C}
- Concepts: Limit, convergence, divergence
- $\lim _{n \rightarrow \infty} a_{n}=L$: For every $\varepsilon>0, \exists N$ s.t. $\left|a_{n}-L\right|<\varepsilon, n \geq N$
- $a_{n} \rightarrow \infty$: For every $M>0, \exists N$ s.t. $a_{n}>M, n \geq N$.

Key results

- A convergent sequence is bounded; Converse, not true: $(-1)^{n}$
- An alternating sequence is divergent: $(-1)^{n}, \imath^{n}, \sin (n)$
- A monotonic sequence is convergent iff it is bounded
- Don't forget the squeeze theorem!

Series

Basics

- A series is a sequence $\sum_{k=1}^{n} a_{n}$
- Concepts: Limit, convergence, divergence

Key results

- If a nonnegative series converges then $a_{n} \rightarrow 0$ as $n \rightarrow \infty$
- Converse is not always true: $\sum_{k=1}^{n} \frac{1}{n}$
- But $\sum_{k=1}^{n} \frac{1}{n^{p}}$ converges for all $p>1$
- Ratio, root tests can be quite handy!
- Don't forget the comparison test!

Remarks on Sequences and Series

- If $a_{n} \leq b_{n}$ for all n then $\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$
- If $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist then

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}
$$

- But $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)$ may exist even otherwise
- For example, $s_{n}=\sum_{k=1}^{n} \frac{1}{k(k+1)}$ is convergent
- Proof: $0 \leq \frac{1}{k(k+1)} \leq \frac{1}{k^{2}}$ and $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$
- Hence, s_{n} is bounded and monotonic \Longrightarrow convergence
- However, $\sum_{k=1}^{n} \frac{1}{k(k+1)}=\sum_{k=1}^{n} \frac{1}{k}-\sum_{k=1}^{n} \frac{1}{k+1}$
- where both $\sum_{k=1}^{n} \frac{1}{k}$ and $\sum_{k=1}^{n} \frac{1}{k+1}$ are divergent

Continuous Functions

Basics

- f is continuous at x if $\lim _{h \rightarrow 0} f(x+h)=f(x)$
- Same as: $\lim _{h \rightarrow 0^{+}} f(x+h)=\lim _{h \rightarrow 0^{-}} f(x+h)=f(x)$
- Polynomials, trigonometrics, exponential, logarithmics

Key results

- Sums, products, composites of continuous functions are continuous on domain of intersection
- Bolzano's theorem: if $f(a) f(b)<0$ then $f(c)=0$ for some $c \in(a, b)$
- Extreme value theorem: continuous functions on closed intervals have maximum and minimum

Convex Functions

Basics

- Let \mathcal{I} be an interval (closed, open, or semi-open)
- $f: \mathcal{I} \rightarrow \mathbb{R}$ is convex if for all $x, y \in \mathcal{I}$ and $\lambda \in(0,1)$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

- Examples: $f(x)=x^{2}$ on $\mathbb{R},-\ln (x)$ on $[0, \infty)$

Key results

- If f has a local minimum at x then it is a global minimum
- A convex f is continuous on the interior of \mathcal{I}
- If $f^{\prime \prime}(x) \geq 0 \forall x \in \mathcal{I}$ then f is convex

Differentiable Functions I

- f is differentiable at x if $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists
- Denoted by f^{\prime}, it is the derivative of f
- If f^{\prime} exists at x then f is continuous at x
- Chain rule 1: $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
- Chain rule 2: $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) \cdot g^{\prime}$
- Local minimum: if f has a local minimum at x then $f^{\prime}(x)=0$ and $f^{\prime \prime}(x) \geq 0$
- Partial converse: if at $x, f^{\prime}(x)=0$ and $f^{\prime \prime}(x)>0$ then f has a local minimum at x

Differentiable Functions II

Key Results

- Rolle's thm: If $f(a)=f(b)$ then $f^{\prime}(c)=0$ for some $c \in(a, b)$
- Mean value theorem: $\exists c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

- Taylor series formula: there exists $c \in(x, x+h)$ such that

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\cdots+\frac{h^{n+1}}{(n+1)!} f^{(n+1)}(c)
$$

- Anti-derivative: If $g=f^{\prime}$ then g is the anti-derivative of f

Integrals I

- Area under a curve; area of shapes other than polygons
- Partitions, Riemann sums, integrability
- Bounded functions are integrable on finite intervals
- Infinite interval case is a bit more tricky
- Since continuous functions on finite intervals are bounded they are integrable
- FTC I: If $F(x)=\int_{a}^{x} f(t) \mathrm{d} t$ then $F^{\prime}(x)=f(x)$
- FTC II: If G is anti-derivative of g then

$$
\int_{a}^{b} g(t) \mathrm{d} t=G(b)-G(a)
$$

Integrals II

- Lebinitz formula:

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{a}^{g(x)} f(t) \mathrm{d} t=f(g(x)) g^{\prime}(x)
$$

- Change of variables:

$$
\int_{g(a)}^{g(b)} f(t) \mathrm{d} t=\int_{a}^{b} f(g(u)) g^{\prime}(u) \mathrm{d} u
$$

- Integration by parts:

$$
\int f(t) g^{\prime}(t) \mathrm{d} t=f(t) g(t)-\int f^{\prime}(t) g(t) \mathrm{d} t+C
$$

Differential Equations I

- Consider the 1st order ODE: $y^{\prime}+P(x) y=Q(x)$
- Solutions exists and unique if P and Q are continuous on \mathcal{I}
- Homogeneous solution: $y(x)=y(a) e^{-A(x)}$ where $a \in \mathcal{I}$ and $A(x)=\int_{a}^{x} P(t) \mathrm{d} t$
- Nonhomogeneous solution:

$$
y(x)=y(a) e^{-A(x)}+e^{-A(x)} \int_{a}^{x} Q(t) e^{A(t)} \mathrm{d} t
$$

Differential Equations II

- Consider the 2nd order ODE: $y^{\prime \prime}+a y^{\prime}+b y=R(x)$
- Characteristic equation: $r^{2}+a r+b=0$ with roots r_{1}, r_{2}
- Complementary (homogeneous) solution:
- $y(x)=C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x}$ if $r_{1} \neq r_{2}$ and real
- $y(x)=C_{1} e^{\alpha x} \cos (\beta x)+C_{2} e^{\alpha x} \sin (\beta x)$ if $r_{1,2}=\alpha \pm \imath \beta$
- $y(x)=C_{1} e^{r x}+C_{2} x e^{r x}$ if $r_{1}=r_{2}=r$
- Nonhomogeneous solution:
- methods of undetermined coefficients (good for polynomials/exponetials)
- variation of parameters (general but tedious)

Vector Calculus

- Let $\bar{r}(t)=(x(t), y(t))$ denote a curve
- Length of a curve:

$$
\int_{a}^{b}\left\|\bar{r}^{\prime}(t)\right\| \mathrm{d} t
$$

- Of course, $\left\|\bar{r}^{\prime}(t)\right\|=\sqrt{x^{\prime 2}(t)+y^{\prime 2}(t)}$
- Let $\bar{r}(t), \bar{v}(t)$, and $\bar{a}(t)$ denote position, velocity, and acceleration, respectively
- The curvature

$$
\kappa(t)=\frac{\|\bar{a}(t) \times \bar{v}(t)\|}{\|\bar{v}(t)\|^{3}}
$$

