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Real Numbers R

Basics
◮ Operations: +,×,−,÷, identities: 0, 1

◮ Relational: <, ≤, >, ≥

◮ Concepts: bounded, max, sup, inf, min, absolute value

◮ Subsets: Integers N, rationals Q, and irrationals R\Q

Key results

◮ Every two numbers will satisfy either x < y , y < x , or x = y

◮ Every upper bounded set has a supremum

◮ Rationals are dense in R; so are irrationals

◮ x2 = 2 has solutions in R\Q; No solution in R for x2 + 1 = 0
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Complex Numbers C

Basics
◮ Starts with ı, the solution to x2 + 1 = 0

◮ Operations: +,×,−,÷; identities: 0, 1

◮ No relational operators

◮ Concepts: Modulus/absolute value, argument/phase

◮ Subsets: Real numbers R, Imaginary numbers

Key results

◮ z = |z |eıθ where θ = arg(z) (what is arg(z)?)

◮ Euler’s identity: eıθ = cos(θ) + ı sin(θ)

◮ If zn = 1 then zn = eı2kπ , k ∈ N. Hence, z = eı
2kπ
n , k ∈ N
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Sequences

Basics
◮ A sequence is a function f : N → R or C

◮ Concepts: Limit, convergence, divergence

◮ lim
n→∞

an = L: For every ε > 0, ∃ N s.t. |an − L| < ε, n ≥ N

◮ an → ∞: For every M > 0, ∃ N s.t. an > M, n ≥ N.

Key results

◮ A convergent sequence is bounded; Converse, not true: (−1)n

◮ An alternating sequence is divergent: (−1)n, ın, sin(n)

◮ A monotonic sequence is convergent iff it is bounded

◮ Don’t forget the squeeze theorem!
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Series

Basics

◮ A series is a sequence
n
∑

k=1

an

◮ Concepts: Limit, convergence, divergence

Key results

◮ If a nonnegative series converges then an → 0 as n → ∞

◮ Converse is not always true:
n
∑

k=1

1
n

◮ But
n
∑

k=1

1
np

converges for all p > 1

◮ Ratio, root tests can be quite handy!

◮ Don’t forget the comparison test!
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Remarks on Sequences and Series

◮ If an ≤ bn for all n then lim
n→∞

an ≤ lim
n→∞

bn

◮ If lim
n→∞

an and lim
n→∞

bn exist then

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

◮ But lim
n→∞

(an + bn) may exist even otherwise

◮ For example, sn =
n
∑

k=1

1
k(k+1) is convergent

◮ Proof: 0 ≤ 1
k(k+1) ≤

1
k2 and

∞
∑

k=1

1
k2 = π

2

6

◮ Hence, sn is bounded and monotonic =⇒ convergence

◮ However,
n
∑

k=1

1
k(k+1) =

n
∑

k=1

1
k
−

n
∑

k=1

1
k+1

◮ where both
n
∑

k=1

1
k
and

n
∑

k=1

1
k+1 are divergent
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Continuous Functions

Basics
◮ f is continuous at x if lim

h→0
f (x + h) = f (x)

◮ Same as: lim
h→0+

f (x + h) = lim
h→0−

f (x + h) = f (x)

◮ Polynomials, trigonometrics, exponential, logarithmics

Key results

◮ Sums, products, composites of continuous functions are
continuous on domain of intersection

◮ Bolzano’s theorem: if f (a)f (b) < 0 then f (c) = 0 for some
c ∈ (a, b)

◮ Extreme value theorem: continuous functions on closed
intervals have maximum and minimum
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Convex Functions

Basics
◮ Let I be an interval (closed, open, or semi-open)

◮ f : I → R is convex if for all x , y ∈ I and λ ∈ (0, 1),

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

◮ Examples: f (x) = x2 on R, − ln(x) on [0,∞)

Key results

◮ If f has a local minimum at x then it is a global minimum

◮ A convex f is continuous on the interior of I

◮ If f
′′

(x) ≥ 0 ∀x ∈ I then f is convex
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Differentiable Functions I

◮ f is differentiable at x if lim
h→0

f (x+h)−f (x)
h

exists

◮ Denoted by f
′

, it is the derivative of f

◮ If f
′

exists at x then f is continuous at x

◮ Chain rule 1: (fg)
′

= f
′

g + fg
′

◮ Chain rule 2: (f ◦ g)
′

= (f
′

◦ g) · g
′

◮ Local minimum: if f has a local minimum at x then f ′(x) = 0
and f

′′

(x) ≥ 0

◮ Partial converse: if at x , f
′

(x) = 0 and f
′′

(x) > 0 then f has
a local minimum at x
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Differentiable Functions II

Key Results

◮ Rolle’s thm: If f (a) = f (b) then f
′

(c) = 0 for some c ∈ (a, b)

◮ Mean value theorem: ∃c ∈ (a, b) such that

f
′

(c) =
f (b)− f (a)

b − a

◮ Taylor series formula: there exists c ∈ (x , x + h) such that

f (x + h) = f (x) + hf
′

(x) +
h2

2!
f
′′

(x) + · · ·+
hn+1

(n + 1)!
f (n+1)(c)

◮ Anti-derivative: If g = f
′

then g is the anti-derivative of f
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Integrals I

◮ Area under a curve; area of shapes other than polygons

◮ Partitions, Riemann sums, integrability

◮ Bounded functions are integrable on finite intervals

◮ Infinite interval case is a bit more tricky

◮ Since continuous functions on finite intervals are bounded
they are integrable

◮ FTC I: If F (x) =
x
∫

a

f (t)dt then F
′

(x) = f (x)

◮ FTC II: If G is anti-derivative of g then

b
∫

a

g(t)dt = G (b)− G (a)
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Integrals II

◮ Lebinitz formula:

d

dx

g(x)
∫

a

f (t)dt = f (g(x))g
′

(x)

◮ Change of variables:

g(b)
∫

g(a)

f (t)dt =

b
∫

a

f (g(u))g
′

(u)du

◮ Integration by parts:
∫

f (t)g
′

(t)dt = f (t)g(t)−

∫

f
′

(t)g(t)dt + C
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Differential Equations I

◮ Consider the 1st order ODE: y
′

+ P(x)y = Q(x)

◮ Solutions exists and unique if P and Q are continuous on I

◮ Homogeneous solution: y(x) = y(a)e−A(x) where a ∈ I and

A(x) =
x
∫

a

P(t)dt

◮ Nonhomogeneous solution:

y(x) = y(a)e−A(x) + e−A(x)

x
∫

a

Q(t)eA(t)dt
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Differential Equations II

◮ Consider the 2nd order ODE: y
′′

+ ay
′

+ by = R(x)

◮ Characteristic equation: r2 + ar + b = 0 with roots r1, r2
◮ Complementary (homogeneous) solution:

◮ y(x) = C1e
r1x + C2e

r2x if r1 6= r2 and real
◮ y(x) = C1e

αx cos(βx) + C2e
αx sin(βx) if r1,2 = α± ıβ

◮ y(x) = C1e
rx + C2xe

rx if r1 = r2 = r

◮ Nonhomogeneous solution:
◮ methods of undetermined coefficients (good for

polynomials/exponetials)
◮ variation of parameters (general but tedious)
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Vector Calculus

◮ Let r̄(t) = (x(t), y(t)) denote a curve

◮ Length of a curve:
b

∫

a

‖r̄
′

(t)‖dt

◮ Of course, ‖r̄
′

(t)‖ =
√

x ′2(t) + y ′2(t)

◮ Let r̄(t), v̄(t), and ā(t) denote position, velocity, and
acceleration, respectively

◮ The curvature

κ(t) =
‖ā(t)× v̄(t)‖

‖v̄ (t)‖3
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