4 different problems for each type of paper :

Problem 1: Type 1 Find the sum of all the positive integer numbers $(n>0)$ that are divisible by 7 or 11 and that are below 1 lack (ie. $n<100000$).

For example, for the numbers below 50 , we have $7,11,14,21,22,28,33,35,42,44$ and 49 so the sum is $7+11+14+21+22+28+33+35+42+44+49=306$.

Problem 1: Type 2 Find the sum of the first 30 Fibonacci numbers $F_{0}+F_{1}+\cdots+$ $F_{28}+F_{29}$.

We remind that the sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ is given by $F_{0}=1, F_{1}=2$, and $F_{n+2}=$ $F_{n+1}+F_{n}$.

For example, the first 5 Fibonacci numbers is $1,2,3,5$ and 8 so, their sum is $1+2+3+5+8=19$.

Problem 1: Type 3 Give the first 14 values of the factorial numbers (0 !, $1!, \ldots, 13$!), and give their sum.

You also need to find from which value of n its factorial n ! is strictly greater than 10^{15}.

We remind that the factorial function is defined with $0!=1, n!=1 \times 2 \times \cdots \times n=\prod_{i=1}^{n} i$ (and satisfies $(n+1)!=(n+1) \times n!$ recursively).

Problem 1: Type 4 Find the product of all the positive integer numbers ($n>0$) that are divisible by 3 or 5 and that are below 1 lack (ie. $n<100000$).

For example, for the numbers below 20 , we have $3,5,6,9,10,12,15$ and 18 so the sum is $3+5+6+9+10+12+15+18=78$.

