CS 101: Introduction to Computer Science : Solution

Mahindra École Centrale
Duration: 2 hours 30 minutes | Final Semester Examination | Total 100 marks

May 6th, 2015

Remark: There was two different set of question papers, the set 1 had the MCQ first (Pb I), the set 2 had the fill-in-the-blanks first (Pb I).

This solution is based on the set 1.

Problem I: MCQ

(Marks: 30)

This first problem is a list of Multiple Choice Question. Each question (from Q.I. 1 to Q.I.15) carries 2 marks, and has only one correct answer. You need to write on your answer paper the correct answers, and their question numbers, like: Problem I: 1) a 2) c 3) $d \ldots$ 15) d etc.
Q.I.1) When comparing time complexity of two algorithms, the $\operatorname{Big} O$ notation does not consider multiplicative and additive constants. Identify the only option that does not explain a reason for this:
a) these constants depend on the specific details of the way an algorithm is converted to code,
b) these constants only create confusion,
c) as n becomes large, the dependence of $\operatorname{Big} O$ on n significantly dominates over the effects of these constants,
d) depending on the operating system and machine architecture, these constants may impact computation times in different ways.

Answer: b), these constants only create confusion is scientifically not rigourous enough. The three other reasons are correct, as explained in class.
Q.I.2) In many divide-and-conquer algorithms, the time complexity has a term $\log _{2}(n)$ because:
a) $\log _{2}(n)$ is a function that is very common,
b) from one step to the next, the size of the problem is reduced by half, so there are totally $\log _{2}(n)$ such steps,
c) it is very easy to compute the $\log _{2}(n)$ function,
d) $\log _{2}(n)$ is much smaller than n, particularly at large values of n.

> Answer: b), from one step to the next, the size of the problem is reduced by half, so there are totally $\log _{2}(n)$ such steps. We saw some examples of such behaviour, mainly with the Merge Sort algorithm.
Q.I.3) Which Python statement is used to force a specific exception?
a) try
b) except
c) raise
d) force.

Answer: c), raise is used to an exception. For example, raise ValueError("This is a warning message.").
Q.I.4) The difference between a list and a tuple is that:
a) Lists are immutable while tuples are not,
b) Tuples need to contain only variables of type str (ie. strings),
c) Tuples are immutable while values in lists can be changed,
d) A list can be converted to a tuple, while the reverse is not possible.

Answer: c), tuples are immutable while values in lists can be changed indeed. We explained many times that a tuple in Python is nothing but an immutable list.
Q.I.5) Which of the following is not a specific characteristic of Object Oriented Programming (OOP)?
a) Encapsulation
b) Modularity
c) Abstraction
d) Inheritance.

Answer: b), modularity is not a specific characteristic of Object Oriented Programming (OOP), but of modules/packages programming, while the others are.
Q.I.6) In the for loop below there is one elementary semantic mistake:

```
from math import sqrt
m = input("Enter a non-negative \hookleftarrow
        number less than 10: ")
for i in xrange(0, m**2):
    y = i + sqrt(i) + 4
    i -= 1
    print "i =", i, "and y = ", y
```

a) $m * * 2$ can be calculated outside the loop instead of repeating it,
b) square root of negative number is not possible,
c) the looping variable i should not be changed inside the for loop,
d) the print statement is incorrect.

Answer: c), the looping variable i should not be changed inside the for loop, the three other issues are not happening here.
Q.I.7) In Python (and in OOP programming in general), a class is a:
a) Built-in data type,
b) derived data-type,
c) user-defined data typed) extended data type.

Answer: c), a class in Python is like a data type, defined by the user. In labs we saw examples of banking relating classes: clients were instances of the customer class, and accounts were instances of the account class.
Q.I.8) Asking Python to compute $\mathrm{a}=5 /$ ' 0 ' will result in the exception
a) ZeroDivisionError
b) OperandError
c) TypeError
d) OperatorError.

Answer: c), TypeError unsupported operand type(s) for /: "int" and "str" will be raised, because before actually performing the operation, Python checks if he can do it, and here an integer (5) and a string ("0") are incompatible for the / operator).
Q.I.9) If the file myfile.txt does not exist in the current folder, what does the statement $f=o p e n(' m y f i l e '$, 'w') will create?
a) an IOError exception
c) a new file object f, with name 'myfile.txt'
b) an ImportError exception
d) a FileError exception.

myfile.txt does not exist.

Answer: c), because the request mode "w" is write mode, so it does not care about the fact that

Remark: Only one student saw that there was a confusion between "myfile" and "myfile.txt". Let me clear this out : it was simply a typing mistake. Even on Windows, specifying the text extension is always mandatory (in Python).
So if we create the file object f with $f=o p e n(" m y f i l e . t x t ", ~ " w ")$, its name attribute will be "myfile.txt".
Q.I.10) What is the output when the code below is executed?

```
tinylist = [2015, 'Anil']
print tinylist * 2
```

a) $[2015, ~ ' A n i l ', ~ 2015$, 'Anil'].

```
c) [4030, 'Anil', 'Anil'],
d) [20152, 'Anil2'],
```

b) [4030, 'Anil2'],

Answer: a), is the only correct answer, indeed, for a list, the right multiplication with an integer is concatenating the list with itself : l $* \mathrm{k}=1+\mathrm{l}+\ldots \quad+\mathrm{l}(\mathrm{k}$ times $)$).
Q.I.11) What is the value of this Python expression $3 * 1 * * 3$?
a) 1
b) 3
c) 9
d) 27

Answer: b), because the $* *$ power operator has a higher priority that the $*$ multiplicative operator, so $3 * 1 * * 3=3 *(1 * * 3)=3 * 1=3$.
Q.I.12) What is the output when the code below is executed?

```
d = { 'name': 'Zara', 'age': 29 }
print d.has_key('age'), "Name" in d, d.has_key('job')
```

a) True, False, False b) 29, False, True
c) True, True, False
d) 29, True, False.

Answer: a), because d has a key named "age", but no key named "Name" (everything in Python is case sensitive!) neither a key named "job").
Q.I.13) What is the output when the code below is executed?

```
def changeit(mylist):
    mylist = [1, 2, 3, 4]
    print "List inside the function:", mylist
mylist = [6, 5, 2015]
changeit(mylist)
print "List outside the function:", mylist
```

a) List inside the function:, [6, 5, 2015] and List outside the function:, [1, 2, 3, 4].
b) List inside the function:, [1, 2, 3, 4] and List outside the function:, [1, 2, 3, 4].
c) List inside the function:, [1, 2, 3, 4] and List outside the function:, [6, 5, 2015].
d) List inside the function:, [6, 5, 2015] and List outside the function:, [6, 5, 2015].

Answer: c) is the only correct choice, indeed the function will not modify the list (on line 2) but create a new variable, so inside the function the list is [1, 2, 3, 4] but not afterward. This was a tricky question, so both b) and c) were considered as correct.
Q.I.14) What is printed by the code below?

```
a, b = 0, 3
while not (a == 5 or b == 5):
    a = b
    b = b + 1
print "a =", a, "and b =", b
print "a =", \(a\), "and \(b=", b\)
```

a) $\mathrm{a}=5$ and $\mathrm{b}=5$,
b) $\mathrm{a}=5$ and $\mathrm{b}=6$,
c) $\mathrm{a}=4$ and $\mathrm{b}=5$,
d) $\mathrm{a}=5$ and $\mathrm{b}=4$.

Answer: c), because the while loop will conserve the fact that $a \leqslant b$, and therefore stops as soon as $\mathrm{b}=5$.
Q.I.15) Suppose $d=\{$ 'john': 40 , 'peter': 45$\}$, to delete the entry for 'john' what should we write?
a) del $d[$ 'john']
c) d.delete('john': 40)
b) del $d(' j o h n ': ~ 40)$
d) d.del('john')

Answer: a) is the only correct syntax, as seen in class and in lab.

Problem II: Fill in the blanks

(Marks: 20)
For this problem, you need to fill-in the blanks (\qquad _) for each question, on your answer booklet.
Write only the numbers of the questions and the answers for their blanks in your answer sheet, do not copy the entire statement.

- TODO: add some extra explanations?
Q.II.1) When you have to perform an iterative calculation, you would prefer to use a \qquad loop when the number of cycles depends on the calculations within the iterative block, and a \qquad loop when the number of iterations is independent of the block.

Answer: while, for.
Q.II.2) A list can be looked upon as a special case of a \qquad where the keys are taken by default to be \qquad starting at zero in an \qquad order of appearance; so that the sanctity of their order has to be maintained as a trade-off for making keys redundant.

Answer: dict (dictionary), integers, increasing (or ascending).
Q.II. 3

```
class A(objects):
    def f(self):
        return self.g()
    def g(self):
        return "Hi from class A."
class B(A):
    def g(self):
        return "Hi from class B."
```

```
a=A()
b}=\textrm{B}(
print a.f(), b.f()
print a.g(), b.g()
```

The output for this program is _-_-_-_-_-_-_-_- and
---_-_-_-_-_-_-_-.
__•

- "Hi from class A.", "Hi from class B.",
- and then "Hi from class A.", "Hi from class B.".
Q.II.4) Objects of a class are like instances of that class, where the \qquad defined in the class are automatically acquired by all objects, while the \qquad belongs specifically and uniquely to each object.

Answer: methods, attributes.
Q.II.5) Python exceptions can be caught using \qquad and \qquad .
Answer: except and finally (but try and except was accepted also).
Q.II.6)

```
d_num = { '1': 1, '2': 2 }
theCopy = d_num
sum1 = d_num['1'] + theCopy['1']
d_num['1'] = 5
sum2 = d_num['1'] + theCopy['1']
print "sum1 =", sum1, "and sum2 =", sum2
```

What are the values of sum1 = _-_-_-_-_-_ and sum2 = _-_-_-_-_-_-_ when the below code gets executed?

```
Answer: sum1 = 2 and sum2 = 10.
```

Q.II.7) A dictionary can be looked upon as a special case of a \qquad , where the order of appearance of values is made redundant by tagging a key to each value for its unique and explicit identification.

Answer: list.

Q.II.8)

```
x = 0
y = 1
for n in [5, 4, 6]:
    x = x + y*n
    y = y + 2
```

print "x =", x, "and y =", y

```
```

```
print "x =", x, "and y =", y
```

```

What is the value of \(x\) and \(y\) when the below code gets executed: \(\mathrm{x}=\) \(\qquad\) and \(\mathrm{y}=\) _-_-__?

Answer: \(\mathrm{x}=47\) and \(\mathrm{y}=7\). Indeed:
- \(y=1\), then 3 , then 5 , then \(\mathbf{7}\),
- \(x=0\), then \(0+1 * 5=5\), then \(5+3 * 4=17\), then \(17+5 * 6=\mathbf{4 7}\).
Q.II.9) The exact line of code to open a file, stored in the current folder, and named "finalexam.txt", in order to be able to write to that file with the object outfile, is \(\qquad\) -

To read the first five characters from a file object called infile, we should use \(\qquad\) _.
```

- outfile $=$ open("finalexam.txt", "w").
"Write and read" modes such that "rw" or "wr" or "aw" or "wa" were also accepted.
- infile.read(5) reads exactly 5 characters from the file object infile.

```

\section*{Answer:}
(Note: of course, single quotes are also accepted.)
Q.II.10)
```

d_num = {}

```
d_num[(1, 2, 4)] = 8
```

d_num[(1, 2, 4)] = 8
d_num[(4, 2, 1)] = 10
d_num[(4, 2, 1)] = 10
d_num[(1, 2)] = 12
d_num[(1, 2)] = 12
sum1 = 0
sum1 = 0
for k in d_num:
for k in d_num:
sum1 += d_num[k]

```
```

sum1 += d_num[k]

```
```

After having executed that code, what are the values of len(d_num) = \qquad and sum1 = _-_-_-_-_?

Answer: len(d_num) $=3$ and sum1 $=30$, it is quite simple to get, what is done in this for loop is simply a sum of all the values d_num [k], ie. $8+10+12=30$.
Q.II.11) What is the usual and recommended way to import the numpy and pyplot packages for doing scientific computations and plotting?

```
import ------------------ # for numpy
import ----------------- # for pyplot
```


Answer:

- import numpy as np,
- import matplotlib.pyplot as plt.

Problem III: Point out the issues

You need to write down in your answer sheet the locations (in the two programs) of the errors (line number), and how to correct each issue.
Marks: One for spotting each syntax error (there are $7+5$), five for each semantic error (there are $2+2$).
Q.III.1) This first program is applying the concepts of OOP (as seen in class and labs)
(15 marks) to a small example of a banking software (two classes account and savings represent bank accounts). Hint: there are 5 typing mistakes (1 mark each) and 2 semantic mistakes (5 marks each).
\square

Answer:

- Line 4, syntax error (\#1/5): self is not passed as an argument,
- Line 10, semantic error $(\# 1 / 2)$: for deposit, money should be added and not removed,
- Line 15, syntax error (\#2/5): int_rate cannot be directly accessed, it has to be account.int_rate
- Line 18, semantic error ($\# 2 / 2)$: self.balance will not be returned, return interest, self.balance should be used instead.
- Line 23 , syntax error ($\# 3 / 5$): self. n is not defined, n is only given as an argument of the function,
- Line 29, syntax error (\#4/5): init parameter is not given,
- Line 30, syntax error (\#5/5): account class has no method .change_accnt_num, only the child class savings has.

```
class account():
    int_rate = 0.09
    def __init__(account_number, init_deposite): # 1/5 typing
        self.accnt_num = account_number
        self.init_deposite = init_deposite
    def deposit(self, amount):
        """ Method to add some money to an account."""
        self.balance -= amount # 1/2 semantic
        return self.balance
    def calc_interest(self):
        """ Calculate half yearly interest, returns both interest ↔
            and latest balance."""
        interest = self.balance * int_rate * 0.5 # 2/5 typing
        self.balance += interest
        return interest
        return self.balance # 2/2 semantic
class savings(account):
    def calc_interest(self, n):
        interest = self.balance * self.n * account.int_rate # 3/5 \hookleftarrow
            typing
        return interest
    def change_accnt_num(self, new_accnt_num):
        self.accnt_num=new_accnt_num
# One example
my_account = account (1234) # 4/5 typing
my_account.change_accnt_num(3456) # 5/5 typing
```

Q.III.2) This first program is plotting the successive Taylor expansions of the exp function.

- For a function f, of class \mathcal{C}^{n} at a point $x_{0}($ for $n \geqslant 0)$, we write $T_{n}\left(f, x_{0}\right)(x)$ the Taylor expansion for f at the point x_{0} and order $n\left(T_{n}\left(f, x_{0}\right)(x)\right.$ is a function of $\left.x\right)$.
Mathematically, we recall that $T_{n}\left(f, x_{0}\right)(x)$ is defined as $\sum_{k=0}^{n} f^{(k)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{k}}{k!}$.
- The program below is focusing on the function exponential ($f=\exp : x \mapsto \exp (x)$) and the point $x_{0}=0$. On your paper, write the expression of the first 4 Taylor expansions $T_{0}\left(\exp , x_{0}\right)=T_{0}$, $T_{1}\left(\exp , x_{0}\right)=T_{1}, T_{2}\left(\exp , x_{0}\right)=T_{2}, T_{3}\left(\exp , x_{0}\right)=T_{3}$.
- Note that because $\exp (x)$ is increasing quickly, we chose to restrict the domain for x in $[-3,2]$.
- Locate and correct the semantic and typing mistakes.

Hint: there are 5 typing mistakes (1 mark each) and 2 semantic mistakes (5 marks each).

Answer:

- Line 11, semantic mistake ($\# 1 / 2$): ($\mathrm{x}-\mathrm{x} 0$) ${ }^{* *} \mathrm{k}$ and $\operatorname{not}(\mathrm{x} 0-\mathrm{x}) * * \mathrm{k}$!
- Line 14, typing mistake ($\# 1 / 5$): we should return y, not x,
- Line 18, semantic mistake ($\# 2 / 2$): $-3,2$ and not 3,2 ,
- Line 21, typing mistake (\#2/5): plt.figure(), not plt.open_new_figure(),
- Line 24, typing mistake ($\# 3 / 5$): black and not baack,
- Line 28 , the given value to plt.title could also be interpreted as a mistake, as it is different from the one in the included picture! I think only one student remarked this. Sorry, but it was only a typing mistake.
- Line 35, typing mistake (\#4/5): ylabel should be used, not xlabel,
- Line 40, typing mistake (\#5/5): dpi=180 should be used, not resolution=180.

```
# The numpy and pyplot packages have been imported (as usual)
from math import factorial
# The point and function we are interested about
x0 = 0.0
def f(x):
    return np.exp(x)
def taylor_exp(x0, n, x):
    y = (x - x0)**0
    for k in xrange(1, n+1):
        y += f(x0)* (x0 - x)**k / factorial(k) # 1/2 semantic
    return x # 1/5 typing
# Samples for the X axis
X = np.linspace(3, 2, 500) # 2/2 semantic
# New figure
plt.open_new_figure() # 2/5 typing
# Plot exp(x)
plt.plot(X, f(X), color="baack", linewidth=3, label="$\exp(x)$") # \hookleftarrow
    3/5 typing
# Plot the successive Taylor expansion (can go up to 5 or more!)
for n in xrange(0, 4):
    plt.plot(X, taylor_exp(x0, n, X),
            label=("$T_" + str(n) + "(\exp, x_0)(x)$"))
# Title, xlabel and ylabel
plt.title("$\exp(x)$ and its first 4 Taylor approximations.")
# Here the title could also be interpreted as a mistake, as it is \hookleftarrow
    different from the one in the included picture!
plt.xlabel("Values for $x$")
```

```
plt.xlabel("Values for $y$") # 4/5 typing
# Add a legend (using the label of each plot), and show to graph
plt.legend(loc="upper left")
plt.savefig("Taylor_approx_of_exp.png", resolution=180) # 5/5 \hookleftarrow
    typing
# End of the program for plotting partial Taylor series for exp(x)
```

Remark: On Moondle, I uploaded .gif and .mp4 animated views of these first Taylor approximations. Here is included a view of what the graphic looks like (if the program is correctly modified ${ }^{11}$):

The exponential function and its firşt 4 Taylor approximation.

$$
\begin{array}{ll}
- & \exp (x) \\
- & T_{0}\left(\exp , x_{0}\right)(x) \\
- & T_{1}\left(\exp , x_{0}\right)(x) \\
- & T_{2}\left(\exp , x_{0}\right)(x) \\
- & T_{3}\left(\exp , x_{0}\right)(x) \\
\hline
\end{array}
$$

Remark: For some of these mistakes, it can be really tricky to distinguish between a typic or a semantic mistake.

Therefore, we tried to be as nice and as soft as possible when we graded that problem.

[^0]- TODO: add some extra explanations?

This last problem is focusing on an algorithm that can be used to numerically compute the Lagrange polynomials for an interpolation problem. .

- You need to think carefully when designing the algorithms, and then write them as valid Python programs,
- You will have to compute the time and memory complexities of the two functions, and justify your answers,
- The grading will not focus too much on syntax errors, but do your best to respect the Python syntax and write valid Python functions.
- Efficiency, conciseness and clarity of the code you write are also important.

Let f be a function of the real variable: $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x)$. By induction, for all integers $k \geqslant 1$, we define the $k^{\text {th }}$ divided differences f_{k} of f, recursively like this:

1. (base case $k=1$) For $x \in \mathbb{R}$, the first divided difference is $f_{1}[x] \stackrel{\text { def }}{=} f(x)$.
(Please note the use of a bracket [,] in this notation, to differentiate from the notation of a function).
2. (base case $k=2$) For two distinct numbers $x, y \in \mathbb{R}$, the second divided difference is $f_{2}[x, y] \stackrel{\text { def }}{=} \frac{f(x)-f(y)}{x-y}$.
3. (induction case) Now, for $k \geqslant 1$, if f_{k} is defined, we can define the ($k+1$)-th divided difference by induction: If we have $(k+1)$ distinct points $x_{0}, \ldots, x_{k} \in \mathbb{R}$, we define $f_{k+1}\left[x_{0}, \ldots, x_{k}\right]$ as:

$$
f_{k+1}\left[x_{0}, \ldots, x_{k}\right]=\frac{f_{k}\left[x_{0}, \ldots, x_{k-1}\right]-f_{k}\left[x_{1}, \ldots, x_{k}\right]}{x_{0}-x_{k}}
$$

Let $n \geqslant 1$ and $x_{0}, \ldots, x_{n} \in \mathbb{R}$ be $n+1$ distinct real values. Let $L_{f, n}$ be the (unique and real) polynomia ${ }^{2}$ of degree $\leqslant n$ which interpolates the function f on each of these points $x_{i}: \forall 0 \leqslant i \leqslant n, \quad L_{f, n}\left(x_{i}\right)=f\left(x_{i}\right)$.

The goal of this exercise is to numerically compute the value of this polynomial $L_{f, n}$ at a (arbitrary) point t (ie. the value $\left.L_{f, n}(t)\right)$.

Luckily, the divided difference operators ($X \mapsto f_{k}[X]$, as defined above), satisfy this identity:

$$
\begin{align*}
\forall t \in \mathbb{R}, L_{f, n}(t)=f_{1}[& \left.x_{0}\right]+f_{2}\left[x_{0}, x_{1}\right] \times\left(t-x_{0}\right)+f_{3}\left[x_{0}, x_{1}, x_{2}\right] \times\left(t-x_{0}\right)\left(t-x_{1}\right) \\
& +\cdots+f_{n+1}\left[x_{0}, \ldots, x_{n}\right] \times\left(t-x_{0}\right) \ldots\left(t-x_{n}\right) \\
\forall t \in \mathbb{R}, L_{f, n}(t)=\sum_{k=1}^{n} & \left(f_{k}\left[x_{0}, \ldots, x_{k}\right] \times \prod_{i=0}^{k}\left(t-x_{i}\right)\right) . \tag{1}
\end{align*}
$$

Marking scheme: 8 marks for the function divided_differences, 4 marks for Q.IV.1.a) to Q.IV.1.d) (one each), and 8 marks for the second function interpolate.

Remark about the marking scheme: This problem was harder than the rest of the paper, and a small number of students tried it, and an even smaller number of you successfully wrote one of the two functions.

There, we decided to be "very nice" about that problem: if you tried something, you got some points. If we saw that you understood the basic concept (a recursive function, like the merge sort), you got more points.
Q.IV.1) Write a Python function, called divided_differences,
(8 marks) that has to accept exactly 3 arguments: X, Y and n :

[^1]- X will be a list of points x_{0}, \ldots, x_{n} (of size $n+1$);
- Y will be a list of values ${ }^{3}$ taken by the function $f: y_{0}=f\left(x_{0}\right), \ldots, y_{n}=f\left(x_{n}\right)$.
- n is not really necessary, but it is convenient to have it as an argument, so we do not have to compute it too many times (indeed, $n=\operatorname{len}(X)-1=\operatorname{len}(Y)-1)$.

This function divided_differences has to return a list D , also of size $n+1$, containing the values of the successive divided differences for f (the ones that are used in the equation 1):

$$
D[0]=f_{1}\left[x_{0}\right], \quad D[1]=f_{2}\left[x_{0}, x_{1}\right], \ldots, \quad D[n]=f_{n+1}\left(x_{0}, \ldots, x_{n}\right) .
$$

Hint: You can chose for a naive recursive implementation of the function divided_differences, based on the inductive definition; or try to use a more efficient approach ${ }^{4}$. Be sure to include the base case correctly ($n=0, n=1$ - a typing mistake was left ${ }^{5}$ in the exam paper, it said $n=1, n=2$ instead).

Solution for the first function: The task was mainly two things :
(a) handle the base cases ($n=0$ or 1 , ie a list of one point $\mathrm{X}=[\mathrm{x} 0]$ or two points $\mathrm{X}=[\mathrm{x} 0, \mathrm{x} 1])$,
(b) and handle the recursive case.

```
def divided_differences(X, Y, n):
    """ Returns a list D of size n+1, containing the values of the ↔
        successive divided differences for the x points X = [x0,\ldots,xn] \hookleftarrow
        and y points Y = [y0,..yn].
    - Time complexity is O(2^n).
    - Memory complexity is O(2^n).
    - This function is recursive, but we could also use dynamic ↔
        programming (cf. Neuville's algorithm).
    " " "
    # Check that the n is correct
    assert n+1 == len(X) == len(Y) # not required in the exam!
    if n == 0:
        # Base case k = 1
        # f_1[x0] = f(x0) = Y[0]
        return [Y[0]]
    elif n == 1:
        # Base case k=2
        # f_2[x0, x1]=(f(x0) - f(x1))/(x0 - x1) = (Y[0] - Y[1]) / (\hookleftarrow
            X[0] - X[1])
        return[Y[0], (Y[0] - Y[1]) / (X[0] - X[1])]
    else:
        # We write a naive recursive function
        # Left divided difference: f_{_ {n-1}[x_0, .., }\mp@subsup{x}{-}{}{n-1}], ..., f_{ {n\hookleftarrow
            -1}[x_0, .., 
        D1 = divided_differences(X[0:n-1], Y[0:n-1], n-1)
        # Right divided difference: f_{0}[x_1], ..., f_{n-1}[x_1, .., \hookleftarrow
        x_n]
        D2 = divided_differences(X[1:n], Y[1:n], n-1)
        # Now we can compute the new divided difference by using its \hookleftarrow
            definition
```

[^2]```
28 fn=(D1[n-1] - D2[n-1]) / (X[0] - X[n-1]) # X[-1] is the same\hookleftarrow
 as X[n-1]
We concatene the left difference list with the new one
return D1 + [fn]
```

Q.IV.1.a) What is the time complexity of your procedure divided_differences (as a function of $n$, order of the size of the input lists X and Y )? You may choose to make an illustration of the computational sequence to help you in calculating time complexity.
(1 mark)
Q.IV.1.b) Can we hope to be more efficient than a time complexity of $O(n)$ ?
Q.IV.1.c) What is the memory complexity of your procedure divided_differences (as a function of $n$ )? Hint: Try to count how many lists does your program use, and their sizes.
(1 mark)
Q.IV.1.d) We clearly need at least one list of size $n+1$ (the list D , that is returned), but do we need any extra memory during the computation of its values?
(1 mark)

## Answer:

A.IV.1.a) The given solution is the "naive" recursive solution, and it is in $\left.O\left(2^{n}\right)\right)$. A good iterative solution, based on dynamic programming, can have a complexity of $O\left(n^{2}\right)$. More details can be found here: http://www2.math.ou.edu/~npetrov/neville.pdf or https://en. wikipedia.org/wiki/Neville's_algorithm
A.IV.1.b) Impossible, as we need to fill a list of size $n+1$ with some values that has to be computed iteratively (parallelism or vectorialization is impossible here). We have to fill the uppertriangle matrix for the divided differences, which take at least $O\left(n^{2}\right)$ operations. (An illustration can be found on the Wikipedia for Neville's algorithm.)
A.IV.1.c) Similarly, the recursive method has a memory complexity of $O\left(2^{n}\right)$, while the clever iterative method (dynamic program, cf. Neville's algorithm) will use only about $O\left(n^{2}\right)$ memory (half of a $n$ by $n$ matrix).
A.IV.1.d) If implemented correctly, we need a upper-triangle matrix for storing all the values for the divided differences, so at least a memory of $\frac{n(n+1)}{2}=O\left(n^{2}\right)$ is required.
Q.IV.2) Now write a function called interpolate that accepts exactly 3 arguments $X, f$ and $t$ :

- X will be a list of points $x_{0}, \ldots, x_{n}$ (of size $n+1$ ). Note: now you need to define $\mathrm{n}=\operatorname{len}(\mathrm{X})-1$.
- f is a function (like math. exp or math. cos). Note: now you need to compute the list of values Y by calling a function $\mathrm{f}: \mathrm{Y}[\mathrm{i}]=\mathrm{f}(\mathrm{X}[\mathrm{i}])(\forall 0 \leqslant i \leqslant n)$.
- $t$ is a real number (a float in Python).

Hint: this function interpolate should:

- First compute n and Y , by the method you like,
- Then use the previous function divided_differences to compute the list of coefficients D,
- And finally use the formula 1 (given above) to compute $L_{f, n}(t)$ thanks to these coefficients D [0], $\mathrm{D}[1], \ldots, \mathrm{D}[\mathrm{n}]$, the values $\mathrm{x}_{-} 0=\mathrm{X}[0], \mathrm{x}_{-} 1=\mathrm{X}[1], \ldots, \mathrm{x}_{-} \mathrm{n}=\mathrm{X}[\mathrm{n}]$, and the value of the point t .

Again, try to be as efficient as possible, but keep in mind that your program should be valid (ie. semantically correct: you compute what should be computed) and readable.
Similarly, quickly justify what are the time and memory complexity of this procedure interpolate (as a function of $n$ the number of points).
(2 marks)

Solution for the second function: In order to use the formula 1 we need a way to compute a product. It can be done with a for or while loop "manually", or by defining an additionnal function (called prod here).

```
def prod(iterator):
 """ Compute the product of the values in the iterator.
 - Empty product is 1 (by convention).
 - And yes, weirdly, Python does not come with a built-in function \hookleftarrow
 prod.
 " " "
 current_product = 1
 for value in iterator:
 current_product *= value
 return current_product
def interpolate(X, f, t):
 """ Compute the value of the interpolation polynomial of order $n+1\hookleftarrow
 $ for f on the points X = [x0, .., xn], ie the value $L_{f, n\hookleftarrow
 }(t)$.
 - Time and memory complexity is O(2^n) (because we use \hookleftarrow
 divided_differences).
 " " "
 # n is obvious to compute
 n = len(X) - 1
 # Y is just the list of values f(xi)
 Y = [f(xi) for xi in X]
 # We simply call the previous function
 D = divided_differences(X, Y, n)
 # And finally, we use the maths formula (1), directly:
 return sum(
 D[i] * prod(t - X[j] for j in xrange(0, i))
 for i in xrange(0, n+1)
)
 # This formula uses two list comprehension, exactly as (1) used two\hookleftarrow
 Sigma or Pi symbols
```


## Remark:

This is only for your curiosity, there is no question here.
What we just did is writing a function that can be used to predict (or estimate) the value of a function $f$ at a new (arbitrary) point $t$ if the only knowledge that we have about $f$ is its values on certain points $x_{0}, \ldots, x_{n}$.

While this could seem to be useless, it is in fact important for lots of scientific applications: imagine that $y_{i}=f\left(x_{i}\right)$ is a set of points that you measured numerically, and you want to plot a smooth (polynomial) graph of the (unknown) function $f$ as accurate as possible, well plotting the polynomial $L_{f}$ is your best choice.

End of the exam paper.


[^0]:    ${ }^{1}$ The $x$ and $y$ axis have been moved and centered to increase readability, but we do not ask you to do this.

[^1]:    ${ }^{2}$ Mathematically, we can prove that this polynomial, called the Lagrange polynomial, always exists (if the points $x_{i}$ are distinct) and is unique, for any function $f$. But, no need for proving anything here.

[^2]:    ${ }^{3}$ Right now, your function shall take Y as a list of values, not compute the values by calling a function $f$.
    ${ }^{4}$ Similarly to what have been explained in class, e.g. for computing the terms of the Fibonacci's sequence.
    ${ }^{5}$ Sorry about that. You know, it can be really hard to eliminate all the typing mistakes.

