A Note on the Ei Function and a Useful Sum-Inequality

Lilian Besson

LiLian.Besson@CENTRALESUPELEC.FR
CentraleSupélec (campus of Rennes), IETR, SCEE Team,
Avenue de la Boulaie - CS 47601, F-35576 Cesson-Sévigné, France

Abstract

This short note defines formally the Ei function, and gives some interesting inequalities and integration using it. I illustrate the inequalities and detail what is still to be proved.

Keywords: Analysis; Inequalities; Primitive.

1. Introduction and Motivation

Take $a>1, b>1$ and $\gamma>0$, and for an integer $L>0$ consider the sum $\sum_{i=1}^{L}\left(a^{b^{i}}\right)^{\gamma}$. We want to bound it, and the goal is to show that it is bounded by a constant times its last term. A first naive bound is $\sum_{i=1}^{L}\left(a^{b^{i}}\right)^{\gamma} \leq(L+1)\left(a^{b^{L}}\right)^{\gamma}$ which is too brutal as soon as $L \rightarrow \infty$.

I first remind and prove two useful elementary results, and then we define and study the Ei function, to finally prove the desired inequality.

2. Lemma and Proof

Lemma 1 For any $n \in \mathbb{N}^{*}, a>1, b>1$ and $\gamma>0$, we have

$$
\begin{equation*}
\sum_{i=0}^{n}\left(a^{b^{i}}\right)^{\gamma} \leq a^{\gamma}+\left(1+\frac{1}{(\log (a))\left(\log \left(b^{\gamma}\right)\right)}\right)\left(a^{b^{n}}\right)^{\gamma}=\mathcal{O}\left(\left(a^{b^{n}}\right)^{\gamma}\right) \tag{1}
\end{equation*}
$$

Proof We first isolate both the first and last term in the sum and focus on the from $i=1$ sum up to $i=n-1$. As the function $t \mapsto\left(a^{b^{t}}\right)^{\gamma}$ is increasing for $t \geq 1$, we use a sum-integral inequality, and then the change of variable $u:=\gamma b^{t}$, of Jacobian $\mathrm{d} t=\frac{1}{\log b} \frac{\mathrm{~d} u}{u}$, gives

$$
\sum_{i=1}^{n-1}\left(a^{b^{i}}\right)^{\gamma} \leq \int_{1}^{n} a^{\gamma b^{t}} \mathrm{~d} t \leq \frac{1}{\log \left(b^{\gamma}\right)} \int_{\gamma b}^{\gamma b^{n}} \frac{a^{u}}{u} \mathrm{~d} u
$$

Now for $u \geq 1$, observe that $\frac{a^{u}}{u} \leq a^{u}$, and as $\gamma b>1$, we have

$$
\leq \frac{1}{\log \left(b^{\gamma}\right)} \int_{\gamma b}^{\gamma b^{n}} a^{u} \mathrm{~d} u \leq \frac{1}{\log \left(b^{\gamma}\right)} \frac{1}{\log (a)} a^{\gamma b^{b^{n}}}=\frac{1}{(\log (a))\left(\log \left(b^{\gamma}\right)\right)}\left(a^{b^{n}}\right)^{\gamma}
$$

Finally, we obtain as desired, $\sum_{i=0}^{n}\left(a^{b^{i}}\right)^{\gamma} \leq a^{\gamma}+\left(a^{b^{n}}\right)^{\gamma}+\frac{1}{(\log (a))\left(\log \left(b^{\gamma}\right)\right)}\left(a^{b^{n}}\right)^{\gamma}$.

3. Elementary Results

3.1. Integration by Part

The Integration by Part is a basic but useful result to establish inequalities, e.g., for Lemma 10 using Lemma 3, and to prove the existence of finite integrals, e.g., for Lemma 5 using two chained IP.

Lemma 2 (Integration by Part (IP)) Let $x, y \in \mathbb{R}, x \leq y$, and u, v two functions of class ${ }^{1} \mathcal{C}^{1}$, and with this notation $[u v]_{x}^{y}:=u(y) v(y)-u(x) v(x)$, then

$$
\begin{equation*}
\int_{x}^{y} u(t) v^{\prime}(t) \mathrm{d} t=[u v]_{x}^{y}-\int_{x}^{y} u^{\prime}(t) v(t) \mathrm{d} t . \tag{2}
\end{equation*}
$$

Proof The two integrals and the two evaluations are well defined by the \mathcal{C}^{1} hypothesis on both u and v (u and v are continuous at x and y and $u^{\prime} v$ is continuous so integrable on the interval $[x, y]$).

The product function $u v$ is differentiable, and $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$, so $[u v]_{x}^{y}=\int_{x}^{y}(u v)^{\prime}(t) \mathrm{d} t=$ $\int_{x}^{y} u(t) v^{\prime}(t) \mathrm{d} t+\int_{x}^{y} u^{\prime}(t) v(t) \mathrm{d} t$ as wanted, by the linearity of the integral.

Lemma 3 (IP Inequality) If both u, v are non-negative, and non-decreasing, then

$$
\begin{equation*}
\int_{x}^{y} u(t) v^{\prime}(t) \mathrm{d} t \leq u(y) v(y) \tag{3}
\end{equation*}
$$

Proof The non-negativeness gives that $-u(x) v(x) \leq 0$ and the monotony hypothesis gives that $u(t) v^{\prime}(t)$ is non-negative on the interval $[x, y]$, and so $-\int_{x}^{y} u(t) v^{\prime}(t) \mathrm{d} t \leq 0$, so an Integration by Part gives the desired inequality.

3.2. Sum-Integral Inequality

A well known result is the following, which bound a discrete sum $\sum_{i=x}^{y} f(i)$ by two integrals for non-decreasing functions, and it is used for Lemma 10.

Lemma 4 For any $x, y \in \mathbb{N}^{*}, x \leq y$, and f a non-decreasing function on $[0,+\infty)$, then

$$
\begin{equation*}
\int_{x-1}^{y} f(t) \mathrm{d} t \leq \sum_{i=x}^{y} f(i) \leq \int_{x}^{y+1} f(t) \mathrm{d} t, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)+\int_{x}^{y} f(t) \mathrm{d} t \leq \sum_{i=x}^{y} f(i) \leq f(y)+\int_{x}^{y} f(t) \mathrm{d} t . \tag{5}
\end{equation*}
$$

Proof For the first inequality, both parts comes from the monotony of f and monotony and additivity of the integral. On any interval $[i, i+1], f(i)=\min _{t \in[i, i+1]} f(t) \leq \int_{i}^{i+1} f(t) \mathrm{d} t$, and $f(i)=$ $\max _{t \in[i-1, i]} f(t) \geq \int_{i-1}^{i} f(t) \mathrm{d} t$, And so, if we sum these terms from $i=x$ to y, we get

$$
\sum_{i=x}^{y} f(i) \leq \sum_{i=x}^{y} \int_{i}^{i+1} f(t) \mathrm{d} t=\int_{x}^{y+1} f(t) \mathrm{d} t .
$$

1. A function of class \mathcal{C}^{1} is continuous, differentiable and of continuous derivative on its interval of definition.
as well as

$$
\sum_{i=x}^{y} f(i) \geq \sum_{i=x}^{y} \int_{i-1}^{i} f(t) \mathrm{d} t=\int_{x-1}^{y} f(t) \mathrm{d} t .
$$

The two sides of second inequality are immediate by isolating the first (or last) term of the sum $f(y)$ (or $f(x)$), and applying the first inequality to $x-1$ instead of x (or $y-1$ instead of y).

4. The Exponential Integral Ei Function

This last Subsection is rather long, and actually not required to obtain the Lemma 1. But I find this Ei function to be quite interesting, so I wanted to write down these proofs. We define the Ei function (Weisstein, 2017; Collective, 2017), by carefully justifying its existence, and then we give two results using it, to obtain the non-trivial Lemma 10.
Lemma 5 For any $\varepsilon>0, I(\varepsilon):=\int_{-\varepsilon}^{\varepsilon} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u$ exists and is finite, it satisfies this identity

$$
\begin{equation*}
I(\varepsilon)=\left(\mathrm{e}^{\varepsilon}-\mathrm{e}^{-\varepsilon}\right) \log \varepsilon-\left(\mathrm{e}^{\varepsilon}+\mathrm{e}^{-\varepsilon}\right)(\varepsilon \log \varepsilon-\varepsilon)+\int_{0}^{\varepsilon}\left(\mathrm{e}^{u}-\mathrm{e}^{-u}\right)(u \log u-u) \mathrm{d} u . \tag{6}
\end{equation*}
$$

Additionally, it stays finite when $\varepsilon \rightarrow 0$, and $\lim _{\varepsilon \rightarrow 0} I(\varepsilon)=\lim _{\varepsilon \rightarrow 0} \int_{-\varepsilon}^{\varepsilon} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u=0$.
Proof Fix $\varepsilon>0$, and let $I(\varepsilon):=\int_{-\varepsilon}^{\varepsilon} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u$.
Roughly, one just needs to observe ${ }^{2}$ that for u close to $0, \frac{\mathrm{e}^{u}}{u} \sim \frac{1}{u}$ as $\mathrm{e}^{u} \sim 1$, and $\frac{1}{u}$ can be integrated on $[-\varepsilon, \varepsilon]$, even if it is not defined at 0 , because it is odd: $\int_{-\varepsilon}^{\varepsilon} \frac{1}{u} \mathrm{~d} u=\lim _{t \rightarrow 0}\left(\int_{-\varepsilon}^{t} \frac{1}{u} \mathrm{~d} u+\right.$ $\int_{t}^{\varepsilon} \frac{1}{u} \mathrm{~d} u$) (as Cauchy's principal values), and $\int_{-\varepsilon}^{t} \frac{1}{u} \mathrm{~d} u=-\int_{t}^{\varepsilon} \frac{1}{v} \mathrm{~d} v$ with the change of variable $v=-u$. So $\int_{-\varepsilon}^{\varepsilon} \frac{1}{u} \mathrm{~d} u=0$ for any $\varepsilon \geq 0$.

But we have to justify more properly that $I(\varepsilon)$ exists for any $\varepsilon>0$ and that $I(\varepsilon) \rightarrow 0$ for $\varepsilon \rightarrow 0$. A first Integration by Part (Lemma 2) with $a(u)=\mathrm{e}^{u}$ and $b^{\prime}(u)=\frac{1}{u}$, that is $a^{\prime}(u)=\mathrm{e}^{u}$ and by choosing $b(u)=\log |u|$, gives

$$
\begin{aligned}
I(\varepsilon) & =\int_{-\varepsilon}^{\varepsilon} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u \\
& =\left[\mathrm{e}^{u} \log |u|\right]_{-\varepsilon}^{\varepsilon}-\int_{-\varepsilon}^{\varepsilon} \mathrm{e}^{u} \log |u| \mathrm{d} u \\
& =\left(\mathrm{e}^{\varepsilon}-\mathrm{e}^{-\varepsilon}\right) \log \varepsilon-\int_{0}^{\varepsilon}\left(\mathrm{e}^{u}+\mathrm{e}^{-u}\right) \log |u| \mathrm{d} u
\end{aligned}
$$

Let $I_{2}(\varepsilon):=\int_{0}^{\varepsilon}\left(\mathrm{e}^{u}+\mathrm{e}^{-u}\right) \log u \mathrm{~d} u$. A second Integration by Part (Lemma 2) with $a(u)=\mathrm{e}^{u}+\mathrm{e}^{-u}$ and $b^{\prime}(u)=\log u$, that is $a^{\prime}(u)=\mathrm{e}^{u}-\mathrm{e}^{-u}$ and $b(u)=u \log u-u\left(\mathcal{C}^{1}\right.$ on $\left.(0, \varepsilon]\right)$, gives

$$
\begin{aligned}
I_{2}(\varepsilon) & =\int_{0}^{\varepsilon}\left(\mathrm{e}^{u}+\mathrm{e}^{-u}\right) \log u \mathrm{~d} u \\
& =\left[\left(\mathrm{e}^{u}+\mathrm{e}^{-u}\right)(u \log u-u)\right]_{0}^{\varepsilon}-\int_{0}^{\varepsilon}\left(\mathrm{e}^{u}-\mathrm{e}^{-u}\right)(u \log u-u) \mathrm{d} u .
\end{aligned}
$$

2. The notation $f(u) \sim g(u)$ for $u \rightarrow u_{0}$ means that $g(u) \neq 0$ and $f(u) / g(u) \rightarrow 1$ for $u \rightarrow u_{0}$.

Indeed, $b(u)=u \log u-u$ is well defined for $u \rightarrow 0$, as $u \log u \rightarrow 0$, so we can define $b(0)=0$ to have b of class \mathcal{C}^{1} on $[0, \varepsilon]$. Therefore, $I_{2}(\varepsilon)$ exists, and we have, as wanted, the following identity

$$
I(\varepsilon)=\left(\mathrm{e}^{\varepsilon}-\mathrm{e}^{-\varepsilon}\right) \log \varepsilon-\left(\mathrm{e}^{\varepsilon}+\mathrm{e}^{-\varepsilon}\right)(\varepsilon \log \varepsilon-\varepsilon)+\int_{0}^{\varepsilon}\left(\mathrm{e}^{u}-\mathrm{e}^{-u}\right)(u \log u-u) \mathrm{d} u .
$$

The last integral is well defined and finite, as the integrated function is continuous and finite for all u, even at 0 . So this proves that $I(\varepsilon)$ is finite for any $\varepsilon>0$.

Now, taking $\varepsilon \rightarrow 0$ gives, for each of the three terms in $I(\varepsilon)$,

$$
\left\{\begin{array}{l}
\left(\mathrm{e}^{\varepsilon}-\mathrm{e}^{-\varepsilon}\right) \log \varepsilon \sim((1+\varepsilon)-(1-\varepsilon)) \log \varepsilon=2 \varepsilon \log \varepsilon \rightarrow 0 \\
\left(\mathrm{e}^{\varepsilon}+\mathrm{e}^{-\varepsilon}\right)(\varepsilon \log \varepsilon-\varepsilon) \sim 2 b(\varepsilon) \rightarrow 0 \\
\int_{0}^{\varepsilon}\left(\mathrm{e}^{u}-\mathrm{e}^{-u}\right)(u \log u-u) \mathrm{d} u \rightarrow 0
\end{array}\right.
$$

so $I(\varepsilon) \rightarrow 0$, as wanted.

Lemma 6 For any $0<\varepsilon \leq 1, I(\varepsilon)$ satisfies $I(\varepsilon) \leq \mathrm{e}^{\varepsilon}-\mathrm{e}^{-\varepsilon}$. In particular, $I(1) \leq \mathrm{e}-\mathrm{e}^{-1}$.
Proof For $0<\varepsilon \leq 1, b(1) \geq-1$, and $\left(\mathrm{e}^{\varepsilon}+\mathrm{e}^{-\varepsilon}\right) \log (\varepsilon) \leq 0$, and so the identity (6) gives $I(\varepsilon) \leq\left(\mathrm{e}^{\varepsilon}-\mathrm{e}^{-\varepsilon}\right)+\int_{0}^{\varepsilon}\left(\mathrm{e}^{u}-\mathrm{e}^{-u}\right)(u \log u-u) \mathrm{d} u$, but $\left(\mathrm{e}^{u}-\mathrm{e}^{-u}\right)(u \log u-u) \leq 0$ for all $u \in[0,1]$, so $I(\varepsilon) \leq\left(\mathrm{e}^{\varepsilon}-\mathrm{e}^{-\varepsilon}\right)$ as wanted. In particular, $I(1) \leq\left(\mathrm{e}-\mathrm{e}^{-1}\right)$.

Definition 7 The Exponential Integral Ei function is defined for $x \in \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ by

$$
\begin{equation*}
\operatorname{Ei}(x):=\int_{-\infty}^{x} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u \tag{7}
\end{equation*}
$$

where the Cauchy's principal value of the integral is taken.
Proof This integral exists and is finite for $x<0$, as the function $u \mapsto \frac{\mathrm{e}^{u}}{u}$ is of class \mathcal{C}^{1} on $(-\infty, 0)$.
For $x \rightarrow 0$ (from above or from below), $\operatorname{Ei}(x) \rightarrow-\infty$.
And for $x>0$, let $\varepsilon>0$, and observe that we can write the integral from $-\infty$ to x as three terms, $\operatorname{Ei}(x)=\operatorname{Ei}(-\varepsilon)+\int_{-\varepsilon}^{\varepsilon} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u+\int_{\varepsilon}^{x} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u . \operatorname{Ei}(-\varepsilon)$ and the last integral both exists and are finite, thanks to the first case of $x<0$ and as the function $u \mapsto \frac{\mathrm{e}^{u}}{u}$ is of class \mathcal{C}^{1} on $(\varepsilon,+\infty)$. And thanks to Lemma 5, $\int_{-\varepsilon}^{\varepsilon} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u$ is finite. So all the three terms in the decomposition of $\operatorname{Ei}(x)$ exist and are finite, therefore $\operatorname{Ei}(x)$ is well defined.

A few properties of Ei worth noting include the following: it has a unique zero (located at $x_{0} \simeq 0.327$), it is negative for $x<x_{0}$ and in particular for $x<0$, it is positive for $x>x_{0}$, and it is decreasing on $(-\infty, 0)$ and increasing on $(0,+\infty)$. Ei is also concave on $(-\infty, 0)$ and $(0,1)$, and convex on $(1,+\infty)$.

Illustration We can plot this function ${ }^{3}$:

Figure 1: The Ei function on $[-1,1]$.

5. Using Ei to compute primitives

Lemma 8 For any $a, b, \gamma \in \mathbb{R}$ and $L \in \mathbb{N}$ such that $a, b>1, \gamma>0$ and $L>0$,

$$
\begin{equation*}
\int_{0}^{L}\left(a^{b^{t}}\right)^{\gamma} \mathrm{d} t=\frac{1}{\log b}\left(\operatorname{Ei}\left(\gamma \log \left(a^{b^{L}}\right)\right)-\operatorname{Ei}(\gamma \log (a))\right) . \tag{8}
\end{equation*}
$$

Proof A first change of variable with $u:=b^{t}$ gives $\mathrm{d} t=\frac{1}{\log b} \frac{1}{u} \mathrm{~d} u(\log b>0$ as $b>1)$, and so

$$
\int_{0}^{L}\left(a^{b^{t}}\right)^{\gamma} \mathrm{d} t=\frac{1}{\log b} \int_{1}^{b^{L}} \frac{1}{u}\left(a^{u}\right)^{\gamma} \mathrm{d} u=\frac{1}{\log b} \int_{1}^{b^{L}} \frac{1}{u}\left(a^{\gamma}\right)^{u} \mathrm{~d} u
$$

And a second change of variable with $v:=\log \left(a^{\gamma}\right) u=\gamma \log (a) u$ gives $\frac{1}{u} \mathrm{~d} u=\frac{1}{v} \mathrm{~d} v$ (and no change in the order of the integral's bounds, as $\log a>0$ as $a>1$), and so

$$
\begin{aligned}
& =\frac{1}{\log b} \int_{\gamma \log (a)}^{\gamma \log (a) b^{L}} \frac{\mathrm{e}^{v}}{v} \mathrm{~d} v=\frac{1}{\log b}[\operatorname{Ei}(v)]_{\gamma \log (a)}^{\gamma \log \left(a^{b^{L}}\right)} \\
& =\frac{1}{\log b}\left(\operatorname{Ei}\left(\gamma \log \left(a^{b^{L}}\right)\right)-\operatorname{Ei}(\gamma \log (a))\right) .
\end{aligned}
$$

[^0]
6. Inequalities for Ei

Lemma 9 (First Inequalities Using Ei) For any $x \in \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}, \operatorname{Ei}(x) \leq \mathrm{e}^{x}$.
Moreover, for $x \geq 1$, we also have $\operatorname{Ei}(x) \geq \operatorname{Ei}(1)+\frac{\mathrm{e}^{x}-\mathrm{e}}{x} \geq-1+\frac{\mathrm{e}^{x}}{x}$.
A useful consequence is that for any $y \geq 1$ and $0 \leq \gamma \leq 1$,

$$
\begin{equation*}
\operatorname{Ei}\left(\log \left(y^{\gamma}\right)\right)=\operatorname{Ei}(\gamma \log (y)) \leq y^{\gamma} . \tag{9}
\end{equation*}
$$

Proof Let $x \in \mathbb{R}$. First, if $x<0$, then clearly $\operatorname{Ei}(x) \leq 0<\mathrm{e}^{x}$.
If $0<x<1$, we can split the integral defining $\operatorname{Ei}(x)$ in two terms, and as $I(x)=\int_{-x}^{x} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u \leq$ $\mathrm{e}^{x}-\mathrm{e}^{-x}$ (see Lemma 6),

$$
\begin{aligned}
\operatorname{Ei}(x) & =\underbrace{\int_{-\infty}^{-x} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u}_{=\operatorname{Ei}(-x) \leq 0}+\underbrace{\int_{-x}^{x} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u}_{=I(x)} \leq I(x) \\
& \leq \mathrm{e}^{x}-\mathrm{e}^{-x} \leq \mathrm{e}^{x} .
\end{aligned}
$$

If $x>1$, we do the same with three terms, and by using $\operatorname{Ei}(-1)=\int_{-\infty}^{-1} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u \leq 0$, and $I(1)=\int_{-1}^{1} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u \leq \mathrm{e}-\mathrm{e}^{-1}$ (see Lemma 6), we have

$$
\begin{aligned}
\operatorname{Ei}(x) & =\underbrace{\int_{-\infty}^{-1} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u}_{=\operatorname{Ei}(-1) \leq 0}+\underbrace{\int_{-1}^{1} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u}_{=I(1)}+\underbrace{\int_{1}^{x} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u}_{\leq \mathrm{e}^{x}-\mathrm{e}^{1}} \leq I(1)+\mathrm{e}^{x}-\mathrm{e} \\
& \leq \mathrm{e}-\mathrm{e}^{-1}+\mathrm{e}^{x}-\mathrm{e}=\mathrm{e}^{x}-\mathrm{e}^{-1} \leq \mathrm{e}^{x} .
\end{aligned}
$$

Now for the lower bound, let $x \geq 1$, and we use the same splitting. For $I(1)$, we use conversely that $I(1) \geq 0$ (see Lemma 6), and for the integral we have $\int_{1}^{x} \frac{\mathrm{e}^{u}}{u} \mathrm{~d} u \geq \frac{1}{x}\left(\mathrm{e}^{x}-\mathrm{e}\right) . \operatorname{So} \operatorname{Ei}(x) \geq$ $\operatorname{Ei}(1)+\frac{\mathrm{e}^{x}-\mathrm{e}}{x}$. We also have $-\frac{\mathrm{e}}{x} \geq-\mathrm{e}$ and numerically, $\operatorname{Ei}(1)-\mathrm{e} \geq-1$ (as $\operatorname{Ei}(1) \simeq 1.895$), so $\operatorname{Ei}(x) \geq-1+\frac{\mathrm{e}^{x}}{x}$.

Finally, if $x=\log \left(y^{\gamma}\right)$ and $y \geq 0$, then $\mathrm{e}^{x}=y^{\gamma}$, so $\operatorname{Ei}(x)=\operatorname{Ei}(\gamma \log (y)) \leq \mathrm{e}^{x}=y^{\gamma}$.

Illustration We can check this inequality $\operatorname{Ei}(x) \leq \mathrm{e}^{x}$ graphically, as well as a tighter inequality $\operatorname{Ei}(x) \leq \operatorname{Ei}(-1)-\frac{1}{e}+\mathrm{e}^{x}$.

Figure 2: The Ei function and two upper-bounds valid respectively on \mathbb{R} and $[1,+\infty)$.

This last sum-inequality is the result we were looking for.
Lemma 10 (Sum Inequality Using Ei) For any $a, b, \gamma \in \mathbb{R}$ and $L \in \mathbb{N}$ such that $a, b>1, \gamma>0$ and $L>0$, and if $\operatorname{Ei}(\gamma \log (a)) \geq 0$, then

$$
\begin{equation*}
\sum_{i=0}^{L-1}\left(a^{b^{i}}\right)^{\gamma} \leq \frac{1}{\log b}\left(a^{b^{L}}\right)^{\gamma} \tag{10}
\end{equation*}
$$

And by isolating the last term, we also have

$$
\begin{equation*}
\sum_{i=0}^{L}\left(a^{b^{i}}\right)^{\gamma} \leq\left(1+\frac{1}{\log b}\right)\left(a^{b^{L}}\right)^{\gamma} \tag{11}
\end{equation*}
$$

Proof Using the sum-integral inequality (Lemma 4) and then Lemma 8, we have directly that

$$
\begin{aligned}
\sum_{i=0}^{L-1}\left(a^{b^{i}}\right)^{\gamma} & \leq \int_{0}^{L}\left(a^{b^{t}}\right)^{\gamma} \mathrm{d} t \\
& \leq \frac{1}{\log b} \operatorname{Ei}\left(\gamma \log \left(a^{b^{L}}\right)\right) \leq \frac{1}{\log b}\left(a^{b^{L}}\right)^{\gamma} .
\end{aligned}
$$

In particular, this inequality (11) holds as soon as $a \geq \mathrm{e}^{0.373 / \gamma}$, as $\gamma \log (a) \geq 0.373>x_{0} \Longrightarrow$ $\operatorname{Ei}(\gamma \log (a)) \geq \operatorname{Ei}\left(x_{0}\right)>0$ and $x_{0} \simeq 0.372507 \geq 0.373$. For instance, $\gamma=1 / 2$ gives $a \geq$ $\mathrm{e}^{0.373 / \gamma}=\mathrm{e}^{0.746} \simeq 2.107$, close to the simplest value $a=2$.

And if $\gamma=0$, then $\operatorname{Ei}(\gamma \log (a))$ cannot be ≥ 0, but the sum in (10) is constant and equals to L.

7. Conclusion

This small note defines and studies a useful non-canonical function called the "exponential integral" function, Ei , and we use it to find a bound on any sum of the form $\sum_{i=0}^{L}\left(a^{b^{i}}\right)^{\gamma}$.

Note: the simulation code used for the experiments is using Python 3, (Foundation, 2017), and Matplotlib (Hunter, 2007) for plotting, as well as SciPy (Jones et al., 2001-). It is open-sourced at github.com/Naereen/notebooks/blob/master/Exponential_Integral_Python.ipynb. This document is also distributed under the open-source MIT License, and is available online at perso.crans.org/besson/publis/A_note_on_the_Ei_function.pdf.

References

Collective. Exponential Integral. https://en.wikipedia.org/wiki/Exponential_ integral, 2017. From Wikipedia, The Free Encyclopedia.

Python Software Foundation. Python language reference, version 3.6. Online at: www. python. org, October 2017. URL https://www. python.org.

John D. Hunter. Matplotlib: A 2D graphics environment. Computing In Science \& Engineering, 9 (3):90-95, 2007. doi: 10.1109/MCSE.2007.55.

Eric Jones, Travis E. Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python. Online at: www.scipy.org, 2001-. URL http://www.scipy.org.
E. W. Weisstein. Exponential Integral. http://mathworld.wolfram.com/ ExponentialIntegral.html, 2017. From MathWorld - A Wolfram Web Resource.

[^0]: 3. See for instance, the scipy.special.expi function, on https://docs.scipy.org/doc/scipy/ reference/generated/scipy.special.expi.html, if you use Python and SciPy (Foundation, 2017; Jones et al., 2001-).
