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TRAFFIC PLANS

Marc Bernot, Vicent Caselles and Jean-Michel Morel

Abstract
In recent research in the optimization of transportation networks,
the problem was formalized as finding the optimal paths to trans-
port a measure µ

+ onto a measure µ
− with the same mass. This

approach is realistic for simple good distribution networks (wa-
ter, electric power,. . . ) but it is no more realistic when we want
to specify “who goes where”, like in the mailing problem or the
optimal urban traffic network problem. In this paper, we present
a new framework generalizing the former approaches and permit-
ting to solve the optimal transport problem under the “who goes
where” constraint. This constraint is formalized as a transference
plan from µ

+ to µ
− which we handle as a boundary condition for

the “optimal traffic problem”.

1. Introduction

Many systems designed by humans can be viewed as supply-demand
distribution networks designed to transport goods from one place (the
supply) to another (the demand). This is obviously the case with dis-
tribution networks such as communication networks [11], electric power
supply, etc. The same can be said of many natural flow networks which
connect a finite size volume to a source. This happens for example
with drainage networks [14], gas pipeline [3], actual plants and trees,
bronchial systems or cardiovascular systems.

The Monge-Kantorovitch problem.

A first mathematical transportation problem was formalized by Mon-
ge, then given a relaxed formulation by Kantorovitch [16], [13]. The
problem he considered was the one of moving a pile of sand from a
place to another with the less possible work. In the Monge-Kantorovitch
framework, µ+ and µ− are measures on R

N which model, respectively,
the supply and demand mass distributions. Here, to transport µ+ onto
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µ− means to tell where the supplied mass is sent, i.e. to give a measure π
on R

N×R
N where π(A×B) represents the amount of mass going from A

to B. This measure π is called a transference plan. To evaluate the
efficiency of a transference plan, we consider the cost function c : R

N ×
R

N → R where c(x, y) is the cost of transporting a unit mass from x to y.
The cost associated with a transference plan is

∫

RN×RN c(x, y) dπ(x, y).
The minimization of this functional is the Monge-Kantorovitch problem.

As an example, consider the cost function c(x, y) = |x − y|2, and the
supply and demand measures µ+ = δx and µ− = 1

2 (δy1
+ δy2

). The

minimizer π is the measure on R
N × R

N such that π({x} × {y1}) = 1
2

and π({x}× {y2}) = 1
2 . The actual transportation, for the real problem

of transporting sand, is achieved along geodesics between x, y1 and y2

as represented in Figure 1.
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Figure 1. The transport from δx to 1
2 (δy1

+ δy2
).

Monge-Kantorovich versus Q. Xia’s solution.

The Gilbert-Steiner problem and the irrigation problem.

In the Monge-Kantorovitch framework, the cost of the structure
(trucks along roads, buckets, tubes. . . ) achieving the transport is not
taken into account. Indeed, with this formulation, the cost behaves as if
every single particle of sand goes straight from its starting to its ending
point. In the case of real supply-demand distribution problems, achiev-
ing this kind of single particle transport would be very costly. This is
why the structure of the transporting network has to be included in the
formulation of the cost.

The Steiner problem which consists in minimizing the total length of
a network connecting a given set of points could be such a model. How-
ever, this cost is not realistic since it does not discriminate the cost of
high or low capacity edges (a road has not the same cost as a highway).
The first model taking into account capacities of edges was proposed by
Gilbert [11] in the case of communication networks. This author mod-
els the network as a graph such that each edge e is associated with a
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capacity ce. Let f(c) denote the cost per unit length of an edge with
capacity c. It is assumed that f(c) is subadditive and increasing, i.e.,
f(a) + f(b) ≥ f(a + b) ≥ max(f(a), f(b)). Gilbert then considers the
problem of minimizing the cost of networks supporting a given set of
flows between terminals. The subadditivity of the cost f translates the
fact that it is more advantageous to transport flows together. Thus, it
leads to delay bifurcations. In the fluid mechanics context, this subad-
ditivity follows from Poiseuille’s law, according to which the resistance
of a tube increases when it gets thinner (we refer to [2], [7] for a study
of irrigation trees in this context). The Gilbert model was adapted to
the study of optimal pipeline or drainage networks [3], [14]. From a nu-
merical point of view, a backtrack algorithm exploring relevant Steiner
topologies is proposed in [21] to solve a problem of water treatment
network. A different algorithmic approach can be found in [22].

Recently, the discrete Gilbert-Steiner model was set in a more general
continuous framework [19], [15] where the wells and sources are arbi-
trary measures, instead of a finite sum of Dirac masses. Qinglan Xia [19]
models the transportation network as an embedded graph with a count-
able number of vertices and satisfying Kirchhoff’s law. The network can
then represented as a one-dimensional flat current G with possibly non
integer multiplicity satisfying

∂G = µ+ − µ−.

The multiplicity of each edge of the graph represents the fluid flow, or
equivalently the mass conveyed along the vertex. The condition ∂G =
µ+ − µ− implies that Kirchhoff’s law is satisfied at each vertex of the
graph. The penalty for not transporting masses together is Qinglan Xia
considers the energy

(1) Eα(G) =
∑

e edge of G

w(e)α length(e),

where 0 < α < 1. This cost corresponds to a cost per unit length of w(e)α

for each edge e. It is subadditive because of the concavity of f(x) = xα.

As a simple example, the minimizer of (1) with µ+ = δx and µ− =
1
2 (δy1

+ δy2
) is represented in Figure 1. Let us consider another example

which will show the difference with the traffic plan approach: take µ+ =
1
2 (δx1

+ δx2
) and µ− = 1

2 (δy1
+ δy2

). The locations of x1, x2, y1 and y2

and the minimizer are represented in Figure 2.
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Figure 2. Irrigation problem minimizer versus traffic
problem minimizer.

The very same problem with the same energy was given a different
(Lagrangian) formulation in [15], with a single source supply µ+ = δS .
The authors model the transportation network as a set of “fibers” χ(p, ·),
where χ(p, t) represents the location of a particle p ∈ Ω at time t (Ω is an
abstract probability space). The irrigated measure can then be defined
as the density measure of the fibers stopping in any given volume. Let us
mention that the cost functional defined in [15] is slightly different from
the energy (1). Indeed, both functionals coincide on trees, and [15] only
handles such tree like objects, since χ(p, t) has a filtration structure. To
see why the two costs are different, let us consider µ− = 2

5δy1
+ 2

5δy2
+

1
5δy3

and µ+ = δx. The left-hand side of Figure 3 shows that once two
fibers get separated, they are considered to be separated until the end,
even if they coincide geometrically afterwards. Thus, the cost of the
segment part of the graph irrigating y3 is 2l(1/10)α on the left-hand side
of Figure 3 and l(1/5)α on the right-hand side. Now, this difference does
not matter, as it is easily shown [11], [19] that optimal networks are loop
free. Considering the simplest example of transportation with two Dirac
masses as a demand (see Figure 1), Maddalena-Morel-Solimini’s solution
coincides with the Qinglan Xia’s one displayed in Figure 1. In this case
the solution is given by the set of fibers χ : [0, 1] × [0,∞) → R

2, where
χ(p, t) is either the path from x to y1 (if p ∈ [0, 1/2]), or the path from x
to y2 (if p ∈ (1/2, 1]). In any case, we may parameterize these paths by
arc length. Another difference which makes the model in [15] slightly
more restrictive than the Gilbert and the Qinglan Xia models is the fact
that the source is a single Dirac mass.
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Figure 3. Maddalena-Morel-Solimini’s versus Qinglan
Xia’s model of the irrigation problem with µ+ = δx and
µ− = 2

5δy1
+ 2

5δy2
+ 1

5δy3
. The two geometric objects

are the same but on the left-hand side, once fibers sep-
arate, they are considered to be separated until they
stop. This difference, however, is irrelevant for optimal
networks, which are loop free.

Optimal urban transportation problem.

In [5], [6] and [4], a different extension of the Monge-Kantorovitch
problem has been proposed to model urban transportation network.
In [5], a transportation network is modelled as a connected closed set Σ.
The users can either walk or join and use Σ. Thus, the cost for go-
ing from x to y is dΣ(x, y) := d(x, y) ∧ (dist(x, Σ) + dist(y, Σ)), i.e. the
minimum between the euclidian (walking) distance d(x, y) and the sum
of distances from x and y to the network. Notice that the distance dΣ

describes how the euclidian distance is twisted by the network. Given
a population density µ+ and a density of workplaces µ−, the cost of
this transportation network is given by the Monge-Kantorovitch dis-
tance between µ+ and µ−, for the cost dΣ(x, y). The authors of [5] then
consider optimal transportation networks, i.e. transportation networks
with a minimal cost among all transportation networks with length less
than a prescribed length L, and study their qualitative topological and
geometrical properties.

The traffic problem.

Neither the irrigation nor the optimal urban transportation models
incorporate a transference plan constraint, that is to say, a “who is going
where” set of constraints. In case that we incorporate them, we call this
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generalization the traffic problem and its solution a traffic plan. This
problem was briefly addressed in [19], but its solution is not satisfactory,
to the best our knowledge. We explain in the next paragraph why. In
order to understand the discussion, it is good to consider the very basic
problem where µ+ = δx1

+ δx2
and µ− = δy1

+ δy2
as in Figure 2,

i.e. d(x1, y1) = d(x2, y2) is small compared to d(y1, y2) = d(x1, x2). From
the irrigation problem viewpoint, the solution is the same as the Monge-
Kantorovitch one since it is not efficient to group the mass of µ+ together.
It is not if instead we want to find the best transportation network with
the “who goes where” constraint that all the mass in x1 is sent onto y2,
and all the mass in x2 onto y1.

µ = δγ

µ = (δγ1
+ δγ2

)/2

µ = χ#γ

γ(T (γ))

1

γ(0)

γ1(T (γ1)) γ2(T (γ2))

1/2

γ1(0) = γ2(0)

1

1/2

χ(ω)(0)

10

χ(0) χ(1)

Figure 4. Three traffic plans and their associated em-
bedding: a Dirac measure on γ, a tree with one bifur-
cation, a spread tree irrigating Lebesgue’s measure on
the segment [0, 1] × {0} of the plane. Let us detail this
last example. In that case, to ω ∈ [0, 1] correspond
χ(ω) ∈ K, the path parameterized by its length from
the Dirac mass located at (1/2, 1), to the point (ω, 0).
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The Lagrangian formalism of “fibers” [15] is well adapted to that
problem since it keeps track of every mass particle. So in this paper, we
propose to generalize this model. We define a traffic plan as a measure
on the set of all possible paths. Figure 4 shows three examples of traffic
plans: a Dirac mass on a finite length path γ (which means that a unit
mass is transported from γ(0) to γ(L)), a traffic plan with “Y” shape,
and a traffic plan transporting a Dirac mass to the Lebesgue measure
on a segment of the plane. In the same way as for the “Y” shape, a
weighted graph can easily be modelled by an atomic measure on the
space of paths in the graph. The solution of the traffic problem versus
the solution of the irrigation problem is displayed in Figure 2.

We call “traffic plan” any feasible solution for the general traffic prob-
lem, that is, a traffic plan is a probability measure on the set of paths.
This very handy object is more general than the trees of paths consid-
ered in [15] since it allows individual spread fibers to exist, like in the
third example of Figure 4. It permits also to recover the existence results
for the irrigation model obtained using 1-dimensional rectifiable currents
in [19]. It is also adapted to the urban transportation model proposed
by [5]. Our main result is that for those models and more general ones,
“there exists an optimal traffic plan associated with each transference
plan”.

A traffic plan as a compatible pair of a transport path and a
transference plan.

As mentioned in the previous paragraph, a graph approach modelling
the traffic (or mailing) problem was presented in Section 7 of [19]. To
express the transference plan constraint, Qinglan Xia considers what he
calls “compatible pairs” of a transport path and a transference plan.
A piecewise rectilinear curve γ can be viewed as a graph with starting
and ending points denoted by γ−

i and γ+
i . Given an atomic transference

plan π, a transport path (a weighed finite graph in that case) is said to
be compatible with π if it can be decomposed as a sum of curves γi with
weight wi so that π(γ−

i , γ+
i ) = wi. Notice that the notion of traffic plan

is a convenient way to handle such compatible pairs. Indeed, the traffic
plan

∑

i wiδγi
contains both the transference plan and the transport

path information and is such that they are automatically “compatible”.
Qinglan Xia then extends this compatibility definition to more general,
non atomic, irrigating and irrigated measures. A transport path T and
a transference π from µ+ to µ− are said to be compatible if
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• There exist atomic measures ai and bi such that ai ⇀ µ+ and
bi ⇀ µ−.

• There exists a compatible pair (Gi, πi) of transport path and trans-
ference plan from ai to bi such that Gi ⇀ T and πi ⇀ π.

We were not able to find a way to make this definition consistent with
the discrete case. Indeed, a pair of a transport path with a transference
plan can be both at a time compatible with respect to this last general
definition but not compatible with respect to the atomic case definition.

To prove that, let us consider µ+ = µ− = 1
2δx + 1

2δy. Let T be
the null transport path i.e. the one associated with an empty graph.
It is such that div(T ) = µ+ − µ− = 0 so that T is a transport path
from µ+ to µ−. Let π be the transference plan such that π(x, y) = 1

2

and π(y, x) = 1
2 . This means that the mass in x and the mass in y

are swapped by π. Thus defined, T and π form a compatible pair with
respect to the general definition. Indeed, take Gi the graph made of
and edge (x, y) with weight 1

2 and of an edge (yi, xi) with weight 1
2 ,

parallel to (x, y) where yi and xi are getting closer and closer of x and y
(see Figure 5). Then Gi is weakly converging to T = 0. Let us define
ai = 1

2δx + 1
2δyi

and bi = 1
2δy + 1

2δxi
so that ai and bi are weakly

converging to µ+ and µ−. Finally, let πi be the transference plan such
that πi(x, y) = 1

2 and πi(yi, xi) = 1
2 so that πi is weakly converging to π

(see Figure 6). Since, Gi and πi form a compatible pair, it follows that
T and π are compatible. However, considered as a pair of a transport
path and transference plan irrigating atomic measures, they are no more
compatible with respect to the atomic case definition. This proves that
the general definition of a compatible pair does not fit with what Qinglan
Xia wants a compatible pair in the atomic case to be.

x
e

xi yi

ei

y

x y

Figure 5. On the left hand side: the transport path
Gi = 1

2 [[e]] + 1
2 [[ei]] where [[e]] is the vector mea-

sure H1bee with e the unit directional vector of the
edge e. On the right hand side: the weak limit of Gi is
the null transport path.
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Figure 6. On the left hand side: the transference
plan πi is such that πi(x, y) = πi(yi, xi) = 1

2 . On the
right hand side: the limit of πi is the transference plan π
such that π(x, y) = π(y, x) = 1

2 .

Thus, it seems to us that the traffic plan object is a more convenient
way to handle the transference plan constraint since it conveys both at
a time the transport path and the transference plan information. Let us
give the plan of the present paper. In Section 2, we define traffic plans
and transference plans. In Section 3, we model probability measures in
a Lagrangian way as sets of particles indexed by [0, 1]. In Section 4, we
prove semicontinuity results, and sequential compactness properties of
traffic plans. Section 5 is devoted to the proof of existence of minimizers
of the Monge-Kantorovitch problem within our framework. In Section 6,
we prove the existence of a minimizer for both the irrigation and the
traffic problems. This result in particular retrieves the existence results
of [15] and [19] in a more general setting.

2. Traffic plans with prescribed transference plans

Let X ⊂ R
N be a compact set.

Definition 2.1. Let us denote by K the set of 1-Lipschitz maps γ : R
+ →

X endowed with the distance

d(γ, γ′) := sup
k∈N∗

1

k
||γ − γ′||L∞([0,k]).

From now on, we consider B, the Borel σ-algebra on K.

Definition 2.2. Let γ ∈ K. We define its stopping time as

T (γ) := inf{t : γ constant on [t,∞[}.

Remark 2.1. Observe that the stopping time T : K → R̄ is measurable.
Indeed, using Lemma 4.2 below, T is lower semicontinuous. This means
that T−1(]A, +∞]) is open, then measurable. Thus, T is measurable.

Lemma 2.1. The metric space (K, d) is compact.
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Proof: The space K is complete and the precompactness is a straight-
forward consequence of Ascoli-Arzela’s Theorem.

Definition 2.3. We define a traffic plan µ as a probability measure
on (K,B) such that

(2)

∫

K

T (γ) dµ(γ) < ∞.

We denote by TP (X) the set of all traffic plans in X . We denote
by TPC(X) the set of traffic plans µ such that

∫

K
T (γ) dµ(γ) ≤ C. We

shall omit the mention of X in the following.

Remark 2.2. This definition is realistic for a traffic plan, as T (γ) repre-
sents a transportation time and we don’t want the average transportation
time to be infinite! Observe that (2) implies that T (γ) < ∞, µ-almost
everywhere.

Definition 2.4. With any traffic plan µ is associated a transference
plan, that is to say a probability measure on X × X that we denote
by πµ and define by

〈πµ, φ〉 :=

∫

K

φ(γ(0), γ(T (γ))) dµ(γ),

where φ ∈ C(X×X, R). In an informal way, πµ(A×B) is the mass carried
from A to B by means of the traffic plan µ. We denote by TP (π) the
set of traffic plans µ such that πµ = π. This is the set of traffic plans
with prescribed transference plan π.

Definition 2.5. If µ is a traffic plan, we define its irrigating and irrigated
measure by

〈µ+, φ1〉 := 〈πµ, φ1⊗1lX〉 and 〈µ−, φ2〉 := 〈πµ, 1lX⊗φ2〉 φ1, φ2 ∈ C(X).

We denote by TP (ν+, ν−) the set of traffic plans µ such that µ+ = ν+

and µ− = ν−.

3. Parameterization of a probability measure on a
precompact metric space

The aim of this section is to show that we can associate with any
probability measure a system of “elementary particles” such that µn ⇀ µ
becomes “almost every elementary particle of µn tends to an elementary
particle of µ”. In an abstract setting, we assume in this section that
(K, d) is a precompact metric space equipped with the σ-algebra of its
Borel sets. We assume that the results in this section are well-known.
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Unfortunately, we were not able to find any reference. The results of this
section will be applied to traffic plans but it is convenient to develop them
in a more general setting.

Definition 3.1. Let µ be a probability measure on K. We call pa-
rameterization of µ a measurable application χ : ω ∈ [0, 1] → K such
that µ = χ#λ where λ is the Lebesgue measure on [0, 1]. That is to
say µ(A) = λ(χ−1(A)). Observe that if φ : K → R

+ is a µ-measurable
function, then

∫

K
φ(γ) dµ(γ) =

∫

Ω φ(χ(ω)) dω [1, Definition 1.70, p. 32].

Remark 3.1. As an illustrative example, if K = [−1, 1], the Dirac mass
at 0 is parameterized by the null constant application on [0, 1]. In the
same way, an atomic measure

∑n

1 aiδxi
can be parameterized by the

piecewise constant function χ(ω) = x1 on [0, a1], χ(ω) = x2 on ]a1, a2]
and so on.

Remark 3.2. Recall that the function χ : [0, 1] × R
+ → R

N is called a
Carathéodory function if χ(ω, t) is a continuous function of t for almost
every ω ∈ [0, 1] and is measurable in ω for every t ∈ R

+. As it is well-
known, Carathéodory functions are measurable as functions of (ω, t) [8].
As a function of (ω, t), the parameterization χ defined in Definition 3.1
is a Carathéodory function. Observe that, as a consequence of Proposi-
tion 4.1, both concepts coincide for functions χ : [0, 1] → K.

In Lemma 3.2, we shall construct a filtration on K of a special kind
which gives us a parameterization of µ (see Lemma 3.3). For that, we
first prove that we can construct a filtration on K whose sets have a
specified diameter. Then, in Lemma 3.2, we prove that we can adapt
the filtration so that µ does not charge the boundaries of its elements.

Lemma 3.1. There exists a filtration of K made of finite partitions
Fl = {F l

j : 1 ≤ j ≤ Jl}, where Jl ∈ N
∗, such that the diameters of the

sets F l
j are less than 2−l.

Proof: We construct this filtration recursively. In order to construct F1,
we cover K with a finite number of balls of radii 1/4. Let us denote by Bi,
where 1 ≤ i ≤ n, the intersection of these balls with K. Let us find a
partition of K = ∪iBi with at most n elements. To do this, we denote
F̃ 1

1 := B1 and, in a recursive way, we define F̃ 1
i+1 := Bi+1 \ ∪j≤iBj .

If any of the F̃ 1
i is empty, we do not take it into account, so that we

obtain a family of non empty elements F 1
i where i ≤ J1. Since the

F 1
i are precompact, we can iterate the above process by covering them

with balls of radius 1/8. Proceeding iteratively we construct the desired
filtration.
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Lemma 3.2. Let µ be a probability measure on K. There exists a fil-
tration made of finite partitions Fl = {F l

j : 1 ≤ j ≤ Jl}, Jl ∈ N
∗, such

that the diameters of F l
j are less than 2−l+1 and µ(∂F l

j ) = 0 for all l
and j ≤ Jl.

Proof: To obtain this filtration, we slightly modify the construction of
Lemma 3.1. We only need to request in addition that µ(∂F l

j ) = 0 for all l

and j ∈ Jl. For that, it is enough to perturb the radii rl = 2−l(1 + εl),
with εl ≤ 1 so that µ does not charge the boundaries of the balls with
radius rl used to construct Fl.

The filtration obtained in Lemma 3.2 allows us to define a canonical
parameterization of µ. The idea is to group together the ω’s whose
images are close.

Lemma 3.3. Let µ be a probability measure on K and F be the filtration
constructed in Lemma 3.2. There exists a parameterization χ of µ such
that for all l, the sets

Ωj,l = {ω : χ(ω) ∈ F l
j}

are intervals ordered in an increasing way with j.

Proof: We construct χ by successive approximations χn using the filtra-
tion of Lemma 3.2.

Step 1: Definition of χn. Let tn0 := 0 and tnj :=
∑

i≤j µ(F n
i ) where

1 ≤ j ≤ Jn. The application χn is defined as a piecewise constant
function sending each interval [tnj−1, t

n
j [ onto an arbitrary element of F n

j .

By construction, Ωj,l := {ω : χn(ω) ∈ F l
j} = [tlj−1, t

l
j [ for all j ≤ Jl.

We notice that the intervals [tlj−1, t
l
j [ where 1 ≤ j ≤ Jl, are intervals

ordered in an increasing way when j goes from 1 to Jl, so that their
union is [0, 1[. Notice also that µ(F l

j ) = λ(Ωj,l).

Step 2: The sequence χn(ω) converges for all ω. Let us prove that χn is a
Cauchy sequence. Let us first observe that χn(Ωm

j ) ⊂ F m
j for any n ≥ m.

Indeed, let us fix m and n ≥ m. By the definition of filtration, Ωm
j is

the union of Ωn
k where k describes the set of indices such that F n

k ⊂ F m
j .

Thus, χn sends every element of Ωn
k to an element of F n

k ⊂ F m
j . A

fortiori, the image of Ωm
j under χn is in F m

j . Now, since the sets F m
j

have diameter less than 2−m, we deduce that d(χn(ω), χm(ω)) < 2−m

for all m ≤ n. Thus, χn(ω) is a Cauchy sequence.

Let χ be the pointwise limit of χn. Observe that χ is measurable as
a pointwise limit of measurable functions.
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Step 3: The measure χ#λ is exactly µ. We have to show that χ#λ(F l
j ) =

µ(F l
j ) for all (j, l). The measures µ and χ#λ will then be equal on

the sets F l
j which form a Π-system. Then the extension theorem of

Π-systems [18, Lemma 1.6, p. 19] shows that µ = χ#λ on the σ-algebra
generated by this Π-system, that is, on the σ-algebra of Borel sets of K.

Let us fix l, j ≤ Jl, and let us define

Gp := {γ ∈ F l
j : d(γ, ∂F l

j ) ≥ 1/p}.

This is a non decreasing sequence of sets such that ∪pGp = F l
j \ ∂F l

j .
Fix ε > 0. For a sufficiently large p, we have

(3) µ(Gp) ≥ µ(F l
j ) − ε.

Now, consider an l′ such that 2−l′ < 1
2p

. For any y ∈ Gp, there exists k so

that y ∈ F l′

k . Since the diameter of F l′

k is less than 1
2p

, F l′

k ⊂ G2p so that

F̄ l′

k ⊂ F l
j . For n ≥ l′, the construction of χn ensures that χn(Ωl′

k ) ⊂ F l′

k .
Since χ is the pointwise limit of χn,

(4) χ(Ωl′

k ) ⊂ F̄ l′

k ⊂ F l
j .

We obtain a covering of Gp with sets of the form F l′

k satisfying (4), and,
using (3), we have χ#λ(F l

j ) ≥ µ(F l
j ) − ε. This being true for all ε > 0,

we deduce that χ#λ(F l
j ) ≥ µ(F l

j ). Since these sets form a partition
for 1 ≤ j ≤ Jl, and χ#λ is a probability measure, the inequality is
indeed an equality, that is: χ#λ(F l

j ) = µ(F l
j ). As a consequence, we

have χ−1(F l
j ) = Ωj,l modulo a null set.

Definition 3.2. Let (µn)n and µ be probability measures on (K, d). We
say that µn tends to µ “pointwise” whenever there exist parameteriza-
tions χn and χ of µn and of µ, respectively, such that d(χn(ω), χ(ω)) → 0
almost everywhere in [0, 1].

Theorem 3.1. Let (µn)n be a sequence of probability measures on (K, d).
Then µn weakly-∗ converges to µ if and only if µn to µ tends to µ “point-
wise”.

Proof: Assume that µn converges to µ “pointwise”, and let χn, χ denote
the parameterizations of µn and µ, respectively. Since χn(ω) converges
to χ(ω) for almost every ω, using Lebesgue’s theorem, for all φ ∈ C(K),
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we have

〈µn, φ〉 =

∫

K

φ(γ) dµn(γ) =

∫

[0,1]

φ(χn(ω)) dω

→

∫

[0,1]

φ(χ(ω)) dω =

∫

K

φ(γ) dµ(γ) = 〈µ, φ〉.

Conversely, let µn be weakly-∗ converging to µ. Let us consider the
filtration associated with µ constructed in Lemma 3.2. Since µ(∂F l

j ) = 0,

we deduce that µn(F l
j ) converges to µ(F l

j ). Next, applying Lemma 3.3 to
measures µn and µ, we get applications χn and χ such that χn#λ = µn

and χ#λ = µ. The fact that µn(F l
j ) converges to µ(F l

j ) implies that

λ(Ωn
j,l) converges to λ(Ωj,l), where Ωn

j,l := {ω : χn(ω) ∈ F l
j} and Ωj,l :=

{ω : χ(ω) ∈ F l
j}. This convergence of measures implies the convergence

of intervals Ωn
j,l to some intervals Ωj,l, ordered in an increasing way

with j.

We are now in a position to prove that for almost all ω the se-
quence χn(ω) converges to χ(ω). Notice that for almost all ω and for
any l ∈ N, there exists a j ≤ Jl such that ω is in the interior of Ωj,l.
Indeed, there is a finite number of such intervals at each rank of the fil-
tration, and, thus, the set of its endpoints is countable, hence of measure
zero. Thus, for n large enough, we have that ω ∈ Ωn

j,l, i.e., χn(ω) ∈ F l
j .

This yields d(χn(ω), χ(ω)) < 2−l.

4. Stability properties of traffic plans

From now on, we will denote |A| := λ(A) the Lebesgue measure of
a measurable set A ⊂ [0, 1]. Throughout this section, (K, d) is the
compact metric space of Definition 2.1. According to Lemma 3.3, we
can associate with a traffic plan µ a parameterization χ : Ω → K. We
set χ(ω, t) := χ(ω)(t). It is easy to check that χ is a measurable function
from Ω × R

+ → X . Indeed, this is true, since χ is a Carathéodory
function (see Remark 3.2). Moreover, if a function χ : [0, 1] → K is
measurable as a function of (ω, t), then it is measurable as a function
from [0, 1] to (K, d). Being a simple argument, we include it here for the
sake of completeness.

Proposition 4.1. The application χ : Ω×R
+ → X is measurable if and

only if the application ω ∈ [0, 1] 7→ χ(ω, ·) ∈ K is measurable.
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Proof: Let χ : Ω × R
+ → X be a measurable function. Observe that

χ−1(B(γ, r)) = {ω : d(χ(ω), γ) ≤ r}

=

{

ω : ∀ k,
||χ(ω) − γ||L∞([0,k])

k
≤ r

}

= ∩k{ω : ||χ(ω) − γ||L∞([0,k]) ≤ kr}

= ∩k ∩t∈Q∩[0,k] {ω : |χ(ω)(t) − γ(t)| ≤ kr}.

This last expression is a countable intersection of measurable sets since
the maps χ̃ : ω 7→ χ̃(ω, t) are measurable for any t ∈ [0, 1].

This shows that if χ : Ω × R
+ → R

N is measurable, we can define its
associated traffic plan µ := χ#λ. Of course, as we can deduce from the
preceding section, a traffic plan can have many different parameteriza-
tions.

Definition 4.1. Let µn be a sequence of traffic plans. We shall say that
µn converges to a traffic plan µ if one of the equivalent relationships is
satisfied:

µn ⇀ µ,

χn(ω) → χ(ω) in K for almost all ω ∈ Ω,

where µn and µ are parameterized using a common filtration constructed
as in Lemma 3.2, such that µn(∂F l

j ) = µ(∂F l
j ) = 0 for any j, l.

Remark 4.1. An immediate adaptation of Lemma 3.2 permits to use
the same filtration to construct the parameterizations of all measures µn

and µ.

4.1. Lower semicontinuity of length, stopping time, averaged
length and averaged stopping time.

Lemma 4.1. Let µn be a sequence of probability measures on a compact
metric space K and such that µn weakly converges to µ. Let γ 7→ f(γ)
be a lower semicontinuous function on K. Then,

∫

K

f(γ) dµ(γ) ≤ lim inf

∫

K

f(γ) dµn(γ).

Proof: This is a straightforward application of the fact that any lower
semicontinuous function f on a metric compact space is the increasing
limit of a sequence of continuous functions [1, Lemma 1.61, p. 27], and
the monotone convergence theorem.
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Lemma 4.2. Let L(γ) denote the length of γ ∈ K. If the sequence
γn ∈ K converges to γ for the metric d, then

T (γ) ≤ lim inf T (γn),

and

L(γ) ≤ lim inf L(γn).

Proof: For all t ≥ s > lim inf T (γn), there exists an increasing sequence
of indices nk going to infinity such that T (γnk

) < s ≤ t. This ensures
that γnk

(t) = γnk
(s). Considering the limit of this equality, we obtain

γ(t) = γ(s). Then γ is constant on ]lim inf T (γn), +∞[, so that T (γ) ≤
lim inf T (γn). The lower semicontinuity of the length functional is well-
known and we shall omit the details.

Lemma 4.3. If a sequence of traffic plans µn converges to µ, then
∫

K

T (γ) dµ(γ) ≤ lim inf

∫

K

T (γ) dµn(γ)

and
∫

K

L(γ) dµ(γ) ≤ lim inf

∫

K

L(γ) dµn(γ).

Proof: Because of Lemma 4.2, the applications γ 7→ T (γ) and γ 7→ L(γ)
are lower semicontinuous. The desired inequalities then directly come
from Lemma 4.1.

4.2. Multiplicity of a traffic plan and its upper semicontinuity.

Definition 4.2. Let µ be a traffic plan. We call multiplicity of µ at a
point x ∈ R

N the number

|x|µ := µ({γ : ∃ t, γ(t) = x}).

If χ is a parameterization of µ, then we define the path class of x ∈ R
N

as the set

[x]χ := {ω : ∃ t, χ(ω, t) = x}.

Since χ#λ = µ, we have that |[x]χ| = |x|µ.

Remark 4.2. The multiplicity is well defined since the set {γ : ∃ t, γ(t) =
x} is a Borel set of K. Indeed, {γ : ∃ t, γ(t) = x} = ∪n{γ : ∃ t ≤
n, γ(t) = x} is a union of closed sets in K.
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Proposition 4.2 ([15, Lemma 6.2]). Let χn be a sequence of parame-
terizations of traffic plans converging to χ. Suppose further that there
is C > 0 such that

∫

Ω T (χn(ω)) dω ≤ C. Then, for almost all ω,

lim sup |[χn(ω, t)]χn
| ≤ |[χ(ω, t)]χ|.

Proof: Set ε = C/M . By Markov’s inequality,

|{ω : T (χn(ω)) > M}| ≤
C

M
= ε.

Let us define an approximate multiplicity by

[χ(ω, t)]εχ := {ω′ ∈ [χ(ω, t)]χ : T (χ(ω′)) ≤ M}.

Next, let us take an element ω′ in ∩k ∪n>k [χn(ω, t)]εχn
. This means

that there exists a sequence of indices ni which goes to infinity, and
times si ≤ T (χni

(ω)) ≤ M such that χni
(ω′, si) = χni

(ω, t). Since
si is bounded, it is possible to extract si → s and because of uniform
convergence of χni

(ω′, ·) on [0, M ], we obtain χ(ω′, s) = χ(ω, t), hence
ω′ ∈ [χ(ω, t)]χ. This shows that ∩k ∪n>k [χn(ω, t)]εχn

⊂ [χ(ω, t)]χ, so
that

lim sup |[χn(ω, t)]εχn
| ≤ |[χ(ω, t)]χ|.

Thus,
lim sup |[χn(ω, t)]χn

| − ε ≤ |[χ(ω, t)]χ|.

We prove another kind of upper semicontinuity which will be useful
to prove Corollary 4.1.

Lemma 4.4. Let χ be a parametrization of a traffic plan µ. Then, the
function φ : x 7→ |[x]χ| is upper semicontinuous.

Proof: Let us show that for each x such that |[x]χ| < r, there is a
ball B(x, ε) such that for all y in B(x, ε), |[y]χ| < r. This will prove that
φ−1([0, r[) is an open set, and therefore that φ is upper semicontinuous.
Suppose that it is not the case. Then, for each ball Bn := B(x, 1/n),
there is a yn ∈ Bn so that |[yn]χ| ≥ r. Notice that yn tends to x when
n goes to infinity. Let us consider

Ω̃ := ∩n ∪m≥n [ym]χ.

Then, modulo a null set, Ω̃ ⊂ [x]χ. Indeed, for almost every ω, T (χ(ω)) <

∞. For such an ω in Ω̃, this means that for all n, there is an m ≥ n
such that ω ∈ [ym]χ, that is, there is a tm such that χ(ω, tm) = ym.
Since T (χ(ω)) < ∞, the sequence (tm)m can be supposed to be bounded.
Thus, it is possible to extract a convergent subsequence tm → t such
that χ(ω, t) = x, i.e., ω ∈ [x]χ. Thus |Ω̃| ≤ |[x]χ| < r and |Ω̃| =
limn | ∪m≥n [yn]χ| ≥ r. This contradicts our initial assumption.
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Corollary 4.1. Let χ be a parametrization of a traffic plan µ. The
function (ω, t) 7→ |[χ(ω, t)]χ| is measurable.

Proof: This a consequence of the measurability of x 7→ |[x]χ| (Lem-
ma 4.4). Indeed, we have

{(ω, t) : |[χ(ω, t)]χ| < r} = {(ω, t) : χ(ω, t) = x and |[x]χ| < r}

= χ−1({x : |[x]χ| < r}).

4.3. Sequential compactness of traffic plans.

Theorem 4.1. If (µn)n is a sequence of TPC such that µn ⇀ µ,
then πµn

⇀ πµ. Hence, given a sequence (µn)n of TPC , it is possible to
extract a convergent subsequence such that πµn

converges.

Proof: Set ε = C/M . By Markov’s inequality, we have µn(K \ Kε) ≤
C
M

= ε where Kε := {γ : T (γ) ≤ M}. Because of Lemma 4.3, we
also have that

∫

K
T (γ) dµ(γ) ≤ C, and, thus, µ(K \ Kε) < ε. Let

φ ∈ C(X×X, R). Since, by definition of the distance on K, the map γ 7→
φ(γ(0), γ(M)) is continuous from K to R, then, by definition of the
transference plan associated with a traffic plan, we have

lim sup
n

〈πµn
, φ〉 ≤ lim sup

n

(
∫

Kε

φ(γ(0), γ(T (γ))) dµn(γ) + ε||φ||∞

)

= lim sup
n

∫

Kε

φ(γ(0), γ(M)) dµn(γ) + ε||φ||∞

≤ lim sup
n

∫

K

φ(γ(0), γ(M)) dµn(γ) + 2ε||φ||∞

=

∫

K

φ(γ(0), γ(M)) dµ(γ) + 2ε||φ||∞

≤

∫

K

φ(γ(0), γ(T (γ))) dµ(γ) + 4ε||φ||∞

= 〈πµ, φ〉 + 4ε||φ||∞.

In the same way,

lim inf
n

〈πµn
, φ〉 ≥ 〈πµ, φ〉 − 4ε||φ||∞.

Corollary 4.2. Let π be a probability measure on X ×X. There exists
a traffic plan µ such that πµ = π.
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Proof: Let us first prove this property in the case of finite atomic mea-
sures π. Let (ai)

k
i=1 and (bj)

l
j=1 the elements of the support of the two

marginals of π. Let us denote by πi,j the values π({ai} × {bj}). We
now define γi,j ∈ K, the segment joining ai to bj , i.e. γi,j(0) = ai,
for t ∈]0, |ai − bj |],

γi,j(t) :=
t

|ai − bj |
bj +

1 − t

|ai − bj |
ai

and γi,j is constant on [|ai − bj |,∞[. The traffic plan µ :=
∑

i,j πi,jδγi,j

is such that πµ = π by construction.
Let us now consider a general transference plan π and a sequence of

atomic measures πn such that πn ⇀ π. The first part of the proof tells
that there are traffic plans µn such that πµn

= πn. By Theorem 4.1, we
can extract a converging subsequence from (µn)n such that µn converges
to µ with πµn

⇀ πµ. Thus, the traffic plan µ is such that πµ = π.

5. Monge-Kantorovitch problem

For a sake of completeness, we show that the above formalism is
adapted to solve the Monge-Kantorovitch problem. Of course, no result
is new here.

Definition 5.1. We call cost of a traffic plan a functional

I(µ) =

∫

K

c(γ(0), γ(T (γ))) dµ(γ),

where c is a bounded non-negative lower semicontinuous function which
informally represents the cost for transporting a unit of mass from x
to y.

Let us notice that I(µ) =
∫

X×X
c(x, y) dπµ(x, y) where πµ is the

transference plan associated to the traffic plan µ. Given two mea-
sures ν+ and ν−, the Monge-Kantorovitch problem consists in min-
imizing

∫

X×X
c(x, y) dπ(x, y) under prescribed marginal measures ν+

and ν−. By Corollary 4.2, any transference plan can be obtained (in
a not unique way) as the transference plan πµ associated to a traffic
plan µ. Thus, the problem of minimizing I(µ) under prescribed marginal
measures ν+ and ν− is equivalent to the Monge-Kantorovitch problem.
The existence of an optimal transference plan is given by standard lower
semicontinuity argument and compactness. The next two propositions
uses the same strategy at the level of traffic plans.
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Proposition 5.1. If (µn)n and µ are traffic plans such that µn ⇀ µ,
then

I(µ) ≤ lim inf I(µn).

Proof: The application γ 7→ c(γ(0), γ(M)) is lower semicontinuous be-
cause of the lower semicontinuity of c. Then Lemma 4.1 asserts that

lim inf

∫

K

c(γ(0), γ(M)) dµn(γ) ≥

∫

K

c(γ(0), γ(M)) dµ(γ).

Set ε = C/M . By Markov’s inequality, µn(K \ Kε) ≤
C
M

= ε where

Kε := {γ : T (γ) ≤ M}.

For such an M , we have
∫

K

c(γ(0), γ(M)) dµn(γ) ≤ I(µn) + ε||c||∞

and
∫

K

c(γ(0), γ(M)) dµ(γ) ≥ I(µ) − ε||c||∞,

so that

I(µn) + ε||c||∞ ≥ I(µ) − ε||c||∞.

Proposition 5.2. The problem of minimizing I(µ), with µ∈TPC(ν+, ν−)
admits a solution.

Proof: Let µn be a minimizing sequence. Because of Theorem 4.1, there
exists a subsequence such that µn ⇀ µ and πµn

⇀ πµ. In particular,
we have µ+

n ⇀ µ+ and µ−
n ⇀ µ−. Since µ+

n = ν+ and µ−
n = ν−

for all n, µ is a traffic plan satisfying the constraints and such that
I(µ) ≤ lim inf I(µn). Since µn is a minimizing sequence, µ is a minimizer
of I under the constraints of irrigating and irrigated measures.

6. Irrigation and traffic models

In this section, the cost functional we consider is taken from two
irrigation models proposed in [19] and [15]. As in these models, we
prove that the functional admits a minimizer under the constraint of
prescribed irrigating and irrigated measures. In addition, our model
permits to handle a prescribed transference plan constraint. We prove
the existence of minimizing traffic plans with this new constraint. So
we move from an irrigation model to a traffic model. The first three
subsections are devoted to the proof of the existence of minimizers of
the energy functional under the two different sets of constraints. In the
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other two subsections, we show that there exists a loop-free minimizer
of the energy. A change of variable formula permits us to prove that
the energy functional coincides with Q. Xia’s one [19], [20] on loop-free
traffic plans.

6.1. Energy of a traffic plan and existence of a minimizer.

We use the convention that 0α−1 = ∞ with α ∈ [0, 1).

Definition 6.1. Let α ∈ [0, 1]. We call energy of a traffic plan the
functional

(5) E(µ) =

∫

Ω

∫

R+

|[χ(ω, t)]χ|
α−1|χ̇(ω, t)| dt dω,

where χ is a parameterization of µ.

Remark 6.1. This energy will be proved to be a reformulation of the one
used in [19] (see Proposition 6.5).

Remark 6.2. The application (ω, t) 7→|[χ(ω, t)]χ| was shown to be measur-

able in Corollary 4.1. Let us denote |χ̇(ω, t)|sup:=lim sups→t

∣

∣

∣

χ(ω,t)−χ(ω,s)
t−s

∣

∣

∣

and |χ̇(ω, t)|inf := lim infs→t

∣

∣

∣

χ(ω,t)−χ(ω,s)
t−s

∣

∣

∣
. Both applications (ω, t) 7→

|χ̇(ω, t)|sup and (ω, t) 7→ |χ̇(ω, t)|inf are measurable since they can be
interpreted as a pointwise limit of measurable functions. For almost ev-
ery ω and for almost every t, |χ̇(ω, t)|inf = |χ̇(ω, t)|sup since χ(ω, ·) is
1-Lipschitz. Thus, the set C where |χ̇(ω, t)| is well defined is measur-
able. If |χ̇| is extended by 0 on Ω×R \C (which is of null measure), the
function thus defined is measurable.

Remark 6.3. The energy of a traffic plan could also be written

E(µ) =

∫

K

∫

R+

|γ(t)|α−1
µ |γ̇(t)| dt dµ(γ).

The traffic problem is the following: given two measures ν+ and ν−,
and a transference plan π between those measures, we look for minimizers
of E with this prescribed transference plan. The irrigation problem is
the less constrained case where we specify globally the supply and the
demand. This latter case is essentially the same as in [19].

Lemma 6.1. Let µ be a traffic plan. Then, we have

E(µ) ≥

∫

K

L(γ) dµ(γ).
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Proof: As the multiplicity at a point x is always less than 1, we have
|x|α−1

µ ≥ 1 and then

E(µ) ≥

∫

K

∫

R+

|γ̇(t)| dt dµ(γ) =

∫

K

L(γ) dµ(γ).

6.2. Normalization of a traffic plan.

Lemma 6.2. Let χ : [0, 1] → K be a parameterization of the traffic
plan µ. We define χ̃(ω) the arc-length reparameterization of χ(ω) in the
usual way. Let

S(ω, t) =

∫ t

0

|χ̇(ω, r)| dr,

and let

T (ω, s) = inf{t ∈ [0,∞) : S(ω, t) = s}.

Let χ̃(ω, s) = χ(ω, T (ω, s)). Then χ̃(ω) ∈ K is Lebesgue measurable and
for all ω ∈ [0, 1], χ̃(ω) is the arc-length reparameterization of χ(ω).

Proof: The map χ̃ is the composition of the maps (I, T ) : [0, 1]×[0,∞) →
[0, 1] × [0,∞) and χ : [0, 1] × [0,∞) → R

N . The measurability of χ̃
will be a consequence of the measurability of (I, T ) and χ, and the
fact that (I, T )−1(N) is a null set in [0, 1] × [0,∞) for any null set N
in [0, 1] × [0,∞).

Let us prove first that (I, T ) is measurable. It suffices to prove that
the function T : [0, 1] × [0,∞) → R is measurable. For that it will be
sufficient to prove that T−1((−∞, λ]) is measurable for any λ ∈ R. Let
{tm}m be a dense sequence in [0,∞). Using that T is non decreasing
and lower semicontinuous in s we may write

T−1((−∞, λ]) =
∞
⋂

n=1

∞
⋃

m=1

{ω ∈ [0, 1] : T (ω, tm) ≤ λ} ×

[

0, tm +
1

n

]

.

Since {ω ∈ [0, 1] : T (ω, tm) ≤ λ} = {ω ∈ [0, 1] : S(ω, λ) ≥ tm} is
measurable, we deduce that T−1((−∞, λ]) is measurable.

Now, let N be a null set in [0, 1] × [0,∞) and let B be a Borel set
containing N (of total measure less than ε). Observe that F (ω, s) :=
1lB(ω, T (ω, s)) is a measurable map. Now, for a.e. fixed value of each
ω ∈ [0, 1], we have

∫ ∞

0

F (ω, s) ds =

∫ ∞

0

1lB(ω, t)St(ω, t) dt ≤

∫ ∞

0

1lB(ω, t) dt,

the last inequality being true since St(ω, t) ≤ 1. Integrating with respect
to ω ∈ [0, 1], and observing that both F and 1lB are measurable in [0, 1]×
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[0,∞), we have

|(I, T )−1(B)|=

∫ 1

0

∫ ∞

0

1lB(ω, T (ω, s)) ds dω ≤

∫ 1

0

∫ ∞

0

1lB(ω, t) dt dω ≤ ε.

We deduce that (I, T )−1(N) is a null set.

Definition 6.2. We say that µ̃ is a normalization of a traffic plan µ
if for some parameterization χ of µ, χ̃#λ = µ̃, where χ̃(ω) is the arc-
length reparameterization of χ(ω) defined in Lemma 6.2. Observe that
E(µ̃) = E(µ).

Remark 6.4. Due to the fact that {γ ∈ K : |γ̇| = 1} is not closed under
the distance d, it is not true that µn ⇀ µ implies µ̃n ⇀ µ̃.

6.3. Existence of a minimizer.

Proposition 6.1. If (µn)n is a normalized sequence in TPC, and µ is
a traffic plan such that µn ⇀ µ, then

E(µ) ≤ lim inf E(µn).

Proof: Let χn, χ′ be parameterizations of µn and µ, respectively, such
that χn(ω) → χ′(ω) converges in (K, d) for almost every ω ∈ [0, 1].
Because of the upper semicontinuity of multiplicity which was proved in
Proposition 4.2 and the lower semicontinuity of L(γ), we have

lim inf
n

E(µn) = lim inf
n

∫

Ω

∫ L(χn(ω))

0

|[χn(ω, t)]χn
|α−1 dt dω

≥

∫

Ω

∫ L(χ′(ω))

0

|[χ′(ω, t)]χ′ |α−1 dt dω

≥

∫

Ω

∫ L(χ′(ω))

0

|[χ′(ω, t)]χ′ |α−1|χ̇′(ω, t)| dt dω

= E(χ′) = E(µ).

Proposition 6.2. The problem of minimizing E(µ) in TP (ν+, ν−) ad-
mits a solution.

Proof: In the case infTP (ν+,ν−) E(µ) = ∞, there is nothing to prove.
Otherwise, there is some C < ∞ such that infTP (ν+,ν−) E(µ) ≤ C. Be-
cause of Lemma 6.1, infTP (ν+,ν−) E(µ) = infTPC (ν+,ν−) E(µ) so that

we can consider a minimizing sequence (µn)n in TPC(ν+, ν−). Since
E(µn) = E(µ̃n), without loss of generality, we can take µn as being
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normalized. Because of Theorem 4.1, it is possible to extract a con-
verging subsequence such that µn ⇀ µ, ν+

µn
⇀ ν+

µ , and ν−
µn

⇀ ν−
µ .

Since ν+
µn

= ν+ for all n, and ν−
µn

= ν−, µ is a traffic plan satisfying
the constraints and E(µ) ≤ lim inf E(µn). Since µn is a minimizing se-
quence, µ is a minimizer of E under the constraint of the prescribed
irrigating and irrigated measures.

Proposition 6.3. The problem of minimizing E(µ) in TP (π) admits a
solution.

Proof: As in the proof of Proposition 6.2, we can consider a minimizing
sequence (µn)n in TPC(π), where C is such that infTP (π) E(µ) ≤ C.
Since E(µn) = E(µ̃n), without loss of generality, we can take µn as
being normalized. Because of Theorem 4.1, it is possible to extract
a subsequence, which we denote again by µn, such that µn ⇀ µ and
πµn

⇀ πµ. Since πµn
= π for all n, µ is a traffic plan satisfying the

constraints and such that E(µ) ≤ lim inf E(µn). Since µn is a minimizing
sequence, µ is a minimizer of E under the constraint of the prescribed
transference plan.

6.4. Loop-free traffic plans.

Definition 6.3. A traffic plan µ is said to be loop-free if there is a
parameterization χ of µ so that for almost all ω ∈ [0, 1], the element χ(ω)
of K is injective on [0, T (χ(ω))].

Definition 6.4. Let µ be a traffic plan. We define the geometric em-
bedding of µ as being the set Gµ := {x : [x]µ 6= 0}.

Proposition 6.4. Let µ be a traffic plan such that E(µ) < ∞. There
exists a loop-free traffic plan µ̃ so that Gµ̃ ⊂ Gµ and πµ̃ = πµ.

Proof: Since the geometric embedding and the transference plans are
invariant under normalization of a traffic plan µ, we can suppose µ to be
normalized. Let χ be a parameterization of µ. Because of Lemma 6.1,
L(χ(ω)) < ∞ for almost all ω ∈ Ω. For these ω, we reparameterize the
path χ(ω), so that we suppress loops. To do so, we introduce the set

Xω = {x ∈ χ(ω, R+)|#χ(ω, ·)−1(x) ∩ [0, L(χ(ω)] > 1},

which is empty if and only if χ(ω) is injective.

Step 1: Existence of a maximal set of injectivity. We shall call a set of
injectivity, a set

Aω =
⋃

x∈Xω

[t−x , t+x [
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such that χ(ω) is injective on [0, L(χ(ω))] \ Aω, where t−x and t+x are
elements of χ(ω, ·)−1(x).

Let us use an iterative process to construct such a set. Let us consider
first the set T 0

ω = [0, L(χ(ω))]. If χ(ω) is injective on T 0
ω , then the

empty set is a set of injectivity. Otherwise, we consider one of the
largest interval [t−1 , t+1 [ where t−1 and t+1 are in T 0

ω ∩ χ(ω, ·)−1(x) with x
in Xω. Such an interval exists since [0, L(χ(ω))] is bounded. We then
set T 1

ω = T 0
ω \ [t−1 , t+1 [. Continuing this process iteratively, we obtain a

decreasing sequence of sets

T n
ω = T n−1

ω \ [t−n , t+n [,

where t−n , t+n ∈ T n−1
ω ∩ χ(ω, ·)−1(x) and x ∈ Xω. The process stops

whenever ∪n
k=1[t

−
k , t+k [ is a set of injectivity. If the process never ends,

the set ∪∞
k=1[t

−
k , t+k [ is a set of injectivity. Indeed, let us assume that

s1, s2 ∈ [0, L(ω)] \∪k[t−k , t+k [ are such that χ(ω, s1) = χ(ω, s2). Then, by
construction,

∞ > L(χ(ω)) ≥
∑

n

|t+n − t−n | ≥
∑

n

|s1 − s2|,

thus s1 = s2. We shall denote by Tω the set [0, L(ω)] \ ∪k[t−k , t+k [.

Step 2: Definition of the reparameterization. The set Tω is a set of time
parameters describing an injective subpath of χ(ω). Let us consider the
non-decreasing continuous function

Sω(u) =

∫ u

0

1lTω
(s) ds

and let us define τω(t) := inf{u ∈ [0,∞) : Sω(u) = t}. Then, τω(t) is
such that |Tω ∩ [0; τω(t)]| = t.

Let us observe that the map τω(t) is measurable as a function of (ω, t).
Let {tm} be a dense sequence in [0,∞). Following the proof of Lem-
ma 6.2, since τω(t) is non-decreasing, lower semicontinuous, and

{ω ∈ [0, 1] : τω(tm) ≤ λ} = {ω ∈ [0, 1] : Sω(λ) ≥ tm}

it suffices to prove that the sets {ω ∈ [0, 1] : Sω(λ) ≥ tm} are measurable
for any λ ≥ 0. For that, it is sufficient to prove that the sets

S = {ω ∈ [0, 1] : Sω(λ) ≤ tm} = {ω ∈ [0, 1] : |Tω ∩ [0, λ]| ≤ tm}

= {ω ∈ [0, 1] : |T c
ω ∩ [0, λ]| ≥ λ − tm}

are measurable for any λ ≥ 0. Let

Tω,p = [0, L(ω)] \ ∪{k:t+
k
−t

−

k
≥ 1

p
}[t

−
k , t+k [
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and observe that ∩pTω,p = Tω Let us prove that for any p ≥ 1, the set

Sp := {ω ∈ [0, 1] : |T c
ω,p ∩ [0, λ]| ≥ λ − tm}

is measurable. Recall that, since χ : [0, 1] → K is measurable, for
each j ∈ N, there is a compact set Bj ⊆ [0, 1] such that χ : Bj → K
is continuous [10]. Let us prove that for any j ∈ N the set

Sp,j := {ω ∈ [0, 1] : |T c
ω,p ∩ [0, λ]| ≥ λ − tm} ∩ Bj

is closed, hence, a Borel set. Let ωi ∈ Sp,j , ωi → ω. Then, for each
of the curves χ(ωi), the sum of the lengths of the loops of length ≥ 1

p

is ≥ λ−tm. Letting i → ∞, we deduce that the sum of the lengths of the
loops of χ(ω) of length ≥ 1

p
is also ≥ λ − tm. In other words, ω ∈ Sp,j .

Since Sp = ∪jSp,j ∪ N where N is a null set, we deduce that Sp is a
measurable set. Now, since ∪pT

c
ω,p = T c

ω, we have that

{ω ∈ [0, 1] : |T c
ω ∩ [0, λ]| ≥ λ − tm}

=

{

ω ∈ [0, 1] : sup
p

|T c
ω,p ∩ [0, λ]| ≥ λ − tm

}

= ∩j ∪k

{

ω ∈ [0, 1] : |T c
ω,k ∩ [0, λ]| ≥ λ − tm −

1

j

}

.

Hence S is measurable. We conclude that τω(t) is measurable as a func-
tion of (ω, t).

We reparameterize the paths χ(ω, s) by χ̃(ω, t) := χ(ω, τω(t)). As in
Lemma 6.2, to prove that the application χ̃(ω, t) is measurable it suffices
to prove that (I, τ)−1(N) is a null set for any null set N ⊆ [0, 1]× [0,∞).
As in the proof of Lemma 6.2, let B be a Borel set containing N (of
total measure less than ε). Observe that G(ω, s) := 1lB(ω, τω(s)) is a
measurable map. Now, for a.e. fixed value of each ω ∈ [0, 1], we have

∫ ∞

0

G(ω, s) ds =

∫ ∞

0

1lB(ω, u)S′
ω(u) du ≤

∫ ∞

0

1lB(ω, u) du,

the last inequality being true since S ′
ω(u) ≤ 1. Integrating with re-

spect to ω ∈ [0, 1], and observing that both G and 1lB are measurable
in [0, 1] × [0,∞), we have

|(I, τ)−1(B)| =

∫ 1

0

∫ ∞

0

1lB(ω, τω(s)) ds dω ≤

∫ 1

0

∫ ∞

0

1lB(ω, u) du dω ≤ ε.

We deduce that (I, τ)−1(N) is a null set. We conclude that χ̃ is mea-
surable. We can then define µ̃ := χ̃#λ.
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Step 3: The traffic plan µ̃ is loop-free. Indeed, if there is an ω such
that χ̃(ω) is not injective, there are t1 and t2 such that y = χ̃(ω, t1) =
χ̃(ω, t2) with t1 6= t2. Then, since τω is increasing, τω(t1) 6= τω(t2). Thus
#χ−1

ω (y) > 1 so by definition of Aω one of these two elements has to be
in Aω. But this is not possible since the image of τω is disjoint from Aω.
Thus, χ̃ is loop-free. By definition of χ̃, πµ̃ = πµ and Gµ̃ ⊂ Gµ.

6.5. A change of variable formula.

Let µ be a traffic plan and χ a parameterization of µ. It will be called
non-trivial if L(χ(ω))>0 on a set of positive measure in Ω:=[0, 1]. Since
we can eliminate the paths whose length is null, without loss of generality
we shall assume that for non-trivial traffic plans we have L(χ(ω)) >
0 a.e. First, we prove that the geometric embedding of a non-trivial
traffic plan with finite energy can be covered by a countable set of paths.
This permits us to compare our energy with the formulation given by
Q. Xia [19], [20]. For a sake of simplicity, we shall denote in the sequel [x]
instead of [x]χ.

Lemma 6.3. Let µ be a non-trivial traffic plan with finite energy and χ
a parameterization of µ. There exists a sequence (ωj)j such that

(6) |[x]χ| = 0 H1-a.e., for x ∈ R \ ∪∞
j=1 Im χ(ωj).

Proof: Let us first prove that we may cover the set

D := {(ω, t) ∈ Ω × [0,∞) : 0 < t < L(χ(ω))}

with a countable number of sets of the form Dω = {(ω̃, t) ∈ D : χ(ω̃, t) ∈
Im χ(ω)}. Since E(µ) is finite and χ is non-trivial, then for almost
all (ω, t) ∈ D, |[χ(ω, t)]| > 0. For each ω ∈ Ω, let

D1
ω := {(ω̃, t) : χ(ω̃, t) ∈ Im χ(ω)}.

Observe that
∫

Ω

|D1
ω| dω =

∫

Ω

|{(ω̃, t) : χ(ω̃, t) ∈ Im χ(ω)}| dω

=

∫

Ω

∫ ∞

0

∫

Ω

1lImχ(ω)(χ(ω̃, t)) dω̃ dt dω

=

∫

Ω

∫ ∞

0

∫

Ω

1lImχ(ω)(χ(ω̃, t)) dω dt dω̃

=

∫

Ω

∫ ∞

0

|[χ(ω̃, t)]| dt dω̃ > 0.
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Hence d1 := supω |D1
ω| > 0. Let us choose ω1 ∈ Ω such that

|D1
ω1
| ≥

d1

2
> 0.

Either Dω1
covers all D, or

|D1
ω1
| <

∫

Ω

∫ L(χ(ω))

0

dt dω.

Proceeding iteratively in this way, and assuming that

k−1
∑

j=1

|Dj
ωj
| <

∫

Ω

∫ L(χ(ω))

0

dt dω,

we define

Dk
ω := {(ω̃, t) : χ(ω̃, t) ∈ Im χ(ω) \ ∪k−1

j=1 Im χ(ωj)}

and we may check that
∫

Ω

|Dk
ω| dω =

∫

(∪k−1

j=1
D

j
ωj

)c

|[χ(ω̃, t)]| dt dω̃ > 0,

which implies that dk := maxω |Dk
ω| > 0. Then we choose ωk ∈ Ω such

that

|Dk
ωk
| ≥

dk

2
> 0.

Either this construction ends in a finite number of steps k and we obtain
that

a.e. ω ∈ Ω Im χ(ω) ⊆ ∪k
j=1 Im χ(ωj),

or we have an infinite number of sets Dj
ωj

and we have

(7) a.e. ω ∈ Ω Im χ(ω) ⊆ ∪∞
j=1 Im χ(ωj).

Indeed, if (7) does not hold then

∞
∑

j=1

|Dj
ωj
| <

∫

Ω

∫ L(χ(ω))

0

dt dω.

In particular, we have dj ≤ 2|Dj
ωj
| → 0 as j → ∞, hence

(8) sup
ω∈Ω

|Dj
ω| → 0 as j → ∞.
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Since
∫

Ω

|Dj
ω| dω =

∫

(∪j−1

i=1
Di

ωi
)c

|[χ(ω̃, t)]| dt dω̃

≥

∫ ∫

(∪∞

i=1
Di

ωi
)c

|[χ(ω̃, t)]| dt dω̃ > 0,

we obtain a contradiction since the left-hand side tends to 0 as j → ∞
while the right-hand side is a positive constant. We have proved that
∪∞

j=1D
j
ωj

covers D (modulo a null set), and, therefore (7) holds.

To prove that (6) holds, assume on the contrary that there exists a
set C such that H1(C) > 0,

(9) C ∩ (∪∞
i=1 Im χ(ωi)) = ∅,

and such that |[x]| > 0 for all x ∈ C. Then

0 <

∫

C

|[x]| dH1(x) =

∫

C

∫

Ω

1l[x](ω) dω dH1(x)

=

∫

Ω

∫

C

1l[x](ω) dH1(x) dω =

∫

Ω

H1(C ∩ Im χ(ω)) dω.

This implies that there exists a subset ΩC of Ω such that H1(C ∩
Im χ(ω)) > 0 for any ω ∈ ΩC , hence for any ω ∈ ΩC the set Iω :=
{t ∈ [0,∞) : χ(ω, t) ∈ C} is of positive measure. Since

{(ω, t) : ω ∈ ΩC , t ∈ Iω} ⊆ {(ω, t) : χ(ω, t) ∈ C},

we conclude that |{(ω, t) : χ(ω, t) ∈ C}| > 0. This contradicts (9). The
lemma follows.

Definition 6.5. Let µ be a traffic plan and χ a parameterization of µ.
For each ω ∈ Ω, we define

Dχ(ω) = {x ∈ R
N : x is a double point of χ(ω)}.

We say that χ has simple paths if H1(Dχ(ω)) = 0 for almost every ω ∈ Ω.

Assume that for a given ω ∈ Ω, χ(ω) is parameterized by arc-length.
Let

Dχ(ω) = {t ∈ [0,∞) : ∃ s < t, χ(ω, t) = χ(ω, s)}.

Observe that H1(Dχ(ω)) = 0 if and only if |Dχ(ω)| = 0. Thus, if χ is
normalized, χ has simple paths if and only if |Dχ(ω)| = 0 for almost
every ω ∈ Ω.
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Our purpose is to prove the following change of variable formula.
Notice that, in the case of a loop-free graph, the right-hand side of the
identity (11) takes the form (1), so that our framework generalizes [19].

Proposition 6.5. Let χ be a parameterization of a nontrivial traffic
plan µ with finite energy. Then, we have

(10) E(µ) =

∫

Ω

∫ ∞

0

|[χ(ω, t)]|α−1|χ̇(ω, t)| dt dω ≥

∫

RN

|[x]χ|
α dH1(x).

If we assume, in addition, that χ has simple paths, we have

(11) E(µ) =

∫

Ω

∫ ∞

0

|[χ(ω, t)]|α−1|χ̇(ω, t)| dt dω =

∫

RN

|[x]χ|
α dH1(x).

Proof: Since the reparameterization χ̃ of χ is measurable (Lemma 6.2),
and since [x]χ = [x]χ̃ for all x ∈ R

N , we may assume that |χ̇(ω, t)| = 1 for
almost all ω ∈ Ω, a.e. t ∈ [0, L(χ(ω))[. Let us consider the sequence (ωj)j

constructed in Lemma 6.3. We denote by D the set

D := {(ω, t) ∈ Ω × [0,∞) : 0 ≤ t < L(χ(ω))}.

Let us prove first that
∫

Dω1

|[χ(ω, t)]|α−1 dω dt =

∫

Im χ(ω1)

|[x]|α dH1(x),

where Dω1
is the set

Dω1
= {(ω̃, t) ∈ D : χ(ω̃, t) ∈ Im χ(ω1)}.

Let us define

Ωω1
:= {ω ∈ Ω : Im χ(ω) ∩ Im χ(ω1) 6= ∅},

Iω = {t < L(χ(ω)) : χ(ω, t) ∈ Im χ(ω1)},

and

I ′ω := {t ∈ R
+ \ Dχ(ω) : χ(ω, t) ∈ Im χ(ω1)}.

Notice that

Dω1
= ∪ω{ω} × Iω .

Let t be in I ′ω. Since χ(ω, t) ∈ Im χ(ω1) and because of the definition
of Dχ(ω1), there is a unique s = ϕ(t) ∈ R

+ \Dχ(ω1) such that χ(ω1, s) =
χ(ω, t). Let I∗

ω be the set

I∗ω = ϕ(I ′ω) = {s ∈ R
+ \ Dχ(ω1) : χ(ω1, s) ∈ Im χ(ω)}.
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Then I∗ω is a Borel set of the same one-dimensional Lebesgue measure
as I ′ω . As in the proof of Lemma 6.4, to prove the measurability of the
set

Q = {(ω, s) : ω ∈ Ωω1
, χ(ω1, s) ∈ Im χ(ω)},

we recall that for each ε > 0, there is a compact set Bε ⊆ [0, 1] such that
χ : Bε → K is continuous [10]. Now, one can easily check that Q∩Bε is
a closed set. We deduce that Q is measurable. Since

{(ω, s) : ω ∈ Ωω1
, χ(ω1, s) ∈ Im χ(ω) \ Dχ(ω1)}

= Q ∩ {(ω, s) : ω ∈ Ωω1
, s 6∈ Dχ(ω1)}

we deduce that the set

{(ω, s) : ω ∈ Ωω1
, χ(ω1, s) ∈ Im χ(ω) \ Dχ(ω1)}

is measurable. Finally observe that 1lI∗

ω
(s) = 1 if and only if ω ∈

[χ(ω1, s)] and s 6∈ Dχ(ω1). Thus, we have
∫

Ωω1

1lI∗

ω
(s) dω = |[χ(ω1, s)]|1lR+\Dχ(ω1).

Then, we have
∫

Dω1

|[χ(ω, t)]|α−1 dω dt =

∫

Ωω1

∫

Iω

|[χ(ω, t)]|α−1 dt dω

≥

∫

Ωω1

∫

I′

ω

|[χ(ω, t)]|α−1 dt dω

=

∫

Ωω1

∫

I∗

ω

|[χ(ω1, s)]|
α−1 ds dω

=

∫

Ωω1

∫ ∞

0

1lI∗

ω
(s)|[χ(ω1, s)]|

α−1 ds dω

=

∫ ∞

0

∫

Ωω1

1lI∗

ω
(s)|[χ(ω1, s)]|

α−1 dω ds

=

∫ ∞

0

|[χ(ω1, s)]|
α−1

∫

Ωω1

1lI∗

ω
(s) dω ds

=

∫

[0,∞)\Dχ(ω1)

|[χ(ω1, s)]|
α ds

=

∫

Im χ(ω1)

|[x]|α dH1(x).
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Notice that in the case µ has simple paths, modulo a null set we have
the identity

Iω = I ′ω.

This proves that for a traffic plan with simple paths,
∫

Dω1

|[χ(ω, t)]|α−1 dω dt =

∫

Im χ(ω1)

|[x]|α dH1(x).

We may reproduce iteratively the same argument for the arcs forming
Im χ(ωk) \ ∪k−1

j=1 Im χ(ωj) to obtain
∫

∪k
j=1

D
j
ωj

|[χ(ω, t)]|α−1 dω dt ≥

∫

∪k
j=1

Im χ(ωj)

|[x]|α dH1(x).

Notice that there is equality in the case µ has simple paths. Letting
k → ∞, and using that ∪∞

j=1D
j
ωj

is a covering (modulo a null set) of

D = {(ω, t) ∈ Ω × [0,∞) : 0 ≤ t < L(χ(ω))},

we obtain
∫

Ω

∫ L(χ(ω))

0

|[χ(ω, t)]|α−1 dt dω ≥

∫

∪∞

j=1
Im χ(ωj)

|[x]|α dH1(x),

and
∫

Ω

∫ L(χ(ω))

0

|[χ(ω, t)]|α−1 dt dω =

∫

∪∞

j=1
Im χ(ωj)

|[x]|α dH1(x)

if µ has simple paths. The proposition follows by using Lemma 6.3.

Let us denote

Ex(µ) =

∫

RN

|[x]µ|
α dH1(x).

Proposition 6.6. The minimum of E on the set of traffic plans is at-
tained at a loop-free traffic plan. Moreover inf E = inf Ex where both
infima can be taken with respect to the set of all traffic plans or the set
of loop-free traffic plans.

Proof: We observe that if µ is a traffic plan and µ̃ its associated loop-
free traffic plan constructed in Proposition 6.4, we have E(µ̃) ≤ E(µ).
To prove it, we observe that when eliminating loops, the multiplicity
decreases, hence Ex(µ) ≥ Ex(µ̃). Now, by Proposition 6.5, we have

E(µ) ≥ Ex(µ) ≥ Ex(µ̃) = E(µ̃).

Our assertions are a simple consequence of Proposition 6.4 and this in-
equality.
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7. Conclusion, some urban problems

We have shown that a simple Lagrangian formalism generalizing the
one in [15] could be used for the continuous generalizations of the
Gilbert-Steiner irrigation problem. This new formalism seems to be use-
ful to formalize naturally the “who goes where” constraint. Now, this
constraint makes essentially sense in a context which is more organiza-
tional than physical or biological. Let us point out some shortcomings of
the approach, if it were to formalize general traffic problems in a realistic
context. We have computed the traffic multiplicity at a point x (in other
terms the intensity of the traffic) as the probability measure of the set
of paths passing by x. If we were to deal with the classical irrigation
problem, opposite paths would cancel while here we added them up. So
we have assumed as a basic principle that the cost of two paths whose
physical supports coincide but go in opposite directions is the same as if
they were going in the same direction. This hypothesis makes actually a
lot of sense for urban traffic, since most streets, highways, sidewalks, etc.
go both ways and the construction cost seems to depend on the width of
an avenue. This width sums up the flows on both directions. Of course,
in the energy functional we considered, the multiplicities add when two
paths cross (even when they do not coincide on a set of positive length).
It is easily checked that the total length and therefore the contribution
to the energy of these crossings is zero. The fact that crossing do not
matter in traffic planning is not realistic. Crossings should have a special
Dirac cost. This, and other more realistic ingredients, like the cost of
the stations, and the commutations from one transportation means to
another, should be considered in order to match the complexity of the
urban transportation problem. We mentioned the Buttazzo-Stepanov [5]
problem as an attempt in that direction, since the authors consider two
transportation media instead of one.
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[8] B. Dacorogna, “Direct methods in the calculus of variations”,
Applied Mathematical Sciences 78, Springer-Verlag, Berlin, 1989.

[9] G. David and S. Semmes, “Fractured fractals and broken dreams”,
Self-similar geometry through metric and measure, Oxford Lecture
Series in Mathematics and its Applications 7, The Clarendon Press,
Oxford University Press, New York, 1997.

[10] J. Diestel and J. J. Uhl, Jr., “Vector measures”, With a fore-
word by B. J. Pettis, Mathematical Surveys 15, American Mathe-
matical Society, Providence, R.I., 1977.

[11] E. N. Gilbert, Minimum cost communication networks, Bell Sys-
tem Tech. J. 46, (1967), 2209–2227.

[12] E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM
J. Appl. Math. 16 (1968), 1–29.

[13] L. Kantorovitch, On the translocation of masses, C. R. (Dok-
lady) Acad. Sci. URSS (N.S.) 37 (1942), 199–201.

[14] D. H. Lee, Low cost drainage networks, Networks 6 (1976),
351–371.

[15] F. Maddalena, S. Solimini and J.-M. Morel, A variational
model of irrigation patterns, Interfaces Free Bound. 5(4) (2003),
391–415.
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