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Abstract

It has been suggested in the literature that a disorgani-
sation of cardiac tissue at the cellular scale may affect the
propagation of the action potential (AP) at the tissue scale,
and may play a role in arrhythmia.

We developed a model of the myocardium at sub-cellular
resolution in which the intracellular space, the cell mem-
brane, and the extracellular space are discretized individ-
ually [1]. We present in this article an improvement of this
model, including gap junction models at any interface be-
tween cells. We then test this approach on hand-crafted
two-dimensional networks of a hundred of cells, and com-
pare it with our previous model which was not including
gap junctions modelling.

1. Introduction

The standard bidomain or monodomain equations
model a cardiac tissue at the macroscopic scale. They may
be derived by homogenization of microscopic bidomain
equations, which model the propagation of the cardiac ac-
tion potential (AP) on a network of individual cells. For
homogenization, the network is assumed to be periodic.

Yet, dysfunction or disorganization (non periodicity) of
the tissue at the cellular level may affect the propagation
of the AP at the tissue scale. For instance, zigzag propa-
gation at a cellular level has been hypothesized to lead to
arrhythmias [2]. These alterations cannot be represented
by the homogenized bidomain or monodomain models.

To understand and tackle such questions, we planned
to simulate the bidomain equations written at the cellular
scale on a manually designed network of cells. The equa-
tions were first studied theoretically [3], we proved exis-
tence of a solution (see ref.[4]), then we ran simulations
on small handcrafted networks of individual cells [1].

In this paper we present an improved version of the
equation system presented in ref.[1], that features gap
junctions modelling. We describe briefly its properties,

and then compare the results it gives to the ones we got
with the previous model.

2. The bidomain model at the cell scale

We consider a set of cells indexed from 1 toN . Each cell
is a connected medium Ωi. The extracellular medium is
noted Ω0 and assumed to be connected. Each cell Ωi may
be glued to some others. In such a case, the border between
them is named Γij (which is the same as Γji) where j is
the index of the other cell. The border between a cell and
the extracellular medium is Γ0i. See example figure 1.

Figure 1. A 3-glued cells example describing the prob-
lem. The first cell is bigger because in our simulations, we
want to be able to apply a stimulation on this cell without
impacting the others.

For all time t > 0, the microscopic equation are −∇ ·
(σi∇ui) = 0 for all i ∈ {0, . . . , N}. The transmission
conditions between two bordering media i and j is

−σi∇ui · ni = σj∇uj · nj = cij∂tvij + Fij(vij , wij).

Last, there is a no-flux boundary condition σe∇ue ·ne = 0
on the external boundary Γe of the system. Here, ui denote
potential fields in the cell i (or the extracellular medium
0). σi are scalar electrical conductivities for each medium.
The trans-membrane voltage across Γij is vij = ui − uj .
Any border Γij is modeled by a capacity cij in parallel
with a ionic current Fij . The vector wij defined on the
interface gathers the additional state variables of such a
ionic current model. Such model is either a classic ionic
model when i or j is 0, or a gap junction model otherwise.
We assume the initial data are given only for the trans-
membrane voltages vij , as vij(0, x) = v0ij(x) for x ∈ Γij .



There exists a well posed weak formulation of these
equations, where ui is searched in the space H1(Ωi), with
an additional gauge condition for sake of uniqueness.

We approximate the solution with the P1-Lagrange fi-
nite element method, and use an Euler time-stepping
method, implicit on the diffusion terms, and explicit on
the ionic ones. Hence, for a sequence of times tn = nδt
(δt > 0), we solve specific discrete equations on each ui in
the discrete P1 spaces, with the condition that the meshes
of each domain (a cell, or the extracellular medium) coin-
cides with the bordering other domains’ ones.

For each time step, we have to solve a linear system
of equations of the form AUn = Fn where Un =(
U0, . . . , UN

)T
is the vector of the degrees of freedom,

and the right-hand side vector Fn =
(
F0, . . . , FN

)T
in-

volves the nonlinear functions Fij .

3. Simulations and results

We intend to compare our results with the ones we got
from our previous work in ref.[1]. Hence, we build two
kind of problems. One type where the cells are connected
by channels of intracellular material (see figure 2) (in a
sense, there is only one long cell with local reductions that
are channels), and one is with ”glued” cells (see figure 3).
The channels actually play a geometrical gap junction role,
but this is far from realistic interpretations of gap junc-
tions. In both figures, the ”S” shape of the cell network
is here for readability and also to respect the constraint
that the extracellular medium has to be connected. On

Figure 2. The top subset of a 100 cells network with
channel junctions, before meshing. The blue dots are spots
where we measure the potential variation across time. The
whole network expands on 20 lines.

the glued case, each node on the membrane between two
cells is assumed to be a gap junction. We will first test
a linear gap junction model (Linear GJ), where the linear
coefficient will be the conductance of the gap junctions (ie
Fij(vij , wij) = vij/Rij). Then, we will show results with
a non-linear gap junction model extracted from experimen-
tations on mouse cells [5]. In the simulations, the intracel-
lular conductivities are set to 1.7mS cm−1 and the extra-
cellular conductivity is set to 3.0mS cm−1. The membrane
capacity is set to 1µF cm−2.

Figure 3. The top subset of a 99 glued cells network,
before meshing. The blue dots are spots where we measure
the potential variation on the membrane across time. The
blackness of the cells is proportionate to their index (from
1 to 99). The whole network expands on 20 lines, the last
lacking one cell compared to the others.

3.1. Specificities of the linear system

The matrix of the linear system is symmetric, and is the
addition of a stiffness matrix computed on all nodes, and
two mass matrices, a first one extracted from the nodes
on any border Γij , and the other from coupling points be-
tween cells i and j who share a border. It is challenging
to compute efficiently these matrices in our finite-element
code, CEPS.

In addition, the initial problem is a pure Neumann equa-
tion (no-flux condition on the external boundary). Hence
the linear system has a unique solution defined up to a con-
stant. Here we compute the solution perpendicular to the
kernel space of the matrix A (corresponding to a gauge
condition) with a conjugate gradient iterative solver, as
suggested in ref. [6].

3.2. Computational solver and meshes

Our model was programmed in the software code CEPS
developed at Inria. It relies on the PETSc library to solve
the linear systems on parallel computers. In test cases be-
low, the problems were designed via a Python script, and
meshed using the Triangle meshing software. For our sim-
ulations, the channel-version of our meshes had 34k nodes,
67.6k triangles. The glued one had 32k nodes and 63.4k
triangles.

3.3. Comparison of the channel and the
Linear GJ case

We chose a resistance value for the linear GJ case by
iterative methods. Indeed, the bibliographic references al-
ways provide a resistance per area unit value. Here, in
two-dimensions, we don’t have any area value. Further-
more, we lack any intel on the gap junction density per unit
of inter-cells membrane. We hence chose a value that was



giving reasonable action potential propagation velocities:
0.015kΩ. For each case, we run a simulation for 420ms,
with a time step of 0.05ms, and an output each 0.1ms. In
each case, we input a stimulation on each side of the left-
upper cell, in order to depolarize it. This stimulation oc-
curs at t = 20ms. For the Linear GJ case, the intensity
of the stimulation is 2.25 × 10−5µA for 0.15ms. For the
channel case, the stimulation’s intensity is 2.70×10−5µA.
This difference results from the fact that in the channel
case, the diffusion implies the need for a bigger stimula-
tion. We show in figures 4 5 the depolarization of the cells,
measured on the blue dots shown in figures 2 and 3 respec-
tively.

Figure 4. Potentials measured on the blue dots shown in
figure 2 for the channel problem. The action potential takes
20ms to cross 0.855cm, which gives a propagation speed
of 42.72cm s−1, which is compatible with the expected AP
velocity presented in the literature.

Figure 5. Potentials measured on the blue dots shown in
figure 3 for the linear GJ problem. The action potential
takes 19ms to cross 0.817cm, which gives a propagation
speed of 43cm s−1.

3.4. Linear GJ: influence of the resistance
value on the AP velocity

In the following cases, we changed the value of the re-
sistance for the gap junctions. We used six different resis-

tance values: R = 0.015kΩ, R = 0.03kΩ, R = 0.06kΩ,
R = 0.075kΩ, R = 0.12kΩ, R = 0.15kΩ. The outcome
is that the higher the resistance, the lower the AP veloc-
ity. We show in figure 6 the velocity depending on the gap
junctions resistance value.

Figure 6. Presentation of the AP velocity depending on the
resistance on the glued 99-cells problem with linear Gap
Junctions. We see that the decrease of velocity is highly
linked with the resistance of the Gap Junctions.

3.5. Linear GJ: influence of the GJ density
on the AP velocity

Another question that arose during our studies is regard-
ing whether a higher membrane-to-cross density on the
path of the AP would significantly impact the AP veloc-
ity. To simulate such a behaviour, we designed a single-
line network of a fixed length where the varying part was
the length of a cell (and hence the number of cells, and
hence the number of membranes to cross). We tested this
problem with both the linear Gap Junction model and the
non-linear one.

We chose to represent five cases: 10 cells of 100µm
length, 20 cells of 50µm length, 50 cells of 20µm length,
5 cells of 200µm length and 2 cells of 500µm length. On
figure 7, we present the AP velocity depending on the typ-
ical cell’s length. From this figure, we infer that the AP

Figure 7. AP velocity depending on cell’s length, and
hence on the gap junction density.



velocity is impacted by the amount of Gap Junction the
AP has to cross per unit of length. This tend to confirm
the impact of the Gap Junctions on the propagation at the
microscopic scale. To extract a reliable velocity intel for
cells with great length (200µm or above), further testing
with longer network should be done.

3.6. Example of non-linear GJ model

We implemented a non-linear GJ model from the results
of ref.[5], that got derived from experimentations on rat
heart cells. With the same parameters as the Linear GJ sim-
ulation, but replacing the linear GJ model by the previously
mentioned model, we run a simulation. Figure 8 shows the
potentials measured for this case. This result is not distin-

Figure 8. Potentials measured on the blue dots shown in
figure 3 for the nonlinear GJ problem. The action potential
takes 19ms to cross 0.817cm, which gives a propagation
speed of 43cm s−1.

guishable from the linear problem with R = 0.015kΩ.

3.7. Linear GJ: example with too high re-
sistance on the membrane between two
cells

We implemented a case where the resistance between
two cells (the 38th and the 39th) is set to 1.5kΩ. Figure 9
shows the potentials measured on the blue dots in figure 3

4. Conclusion

From these different results we were able to show an
impact of the gap junction modelling on the action poten-
tial velocity. The influence of the different models is to be
explored further, with varying parameters, and methods, to
confirm the above results. In particular, comparing simula-
tion results with the experimental output from ref.[5] could
provide a decent way to evaluate to what extend our model
is realistic.

Yet, these results tend to answer positively to the ques-
tions regarding the influence of gap junctions modelling to

Figure 9. Potentials measured on the blue dots shown in
figure 3 when R = 1.5kΩ between the 38th and the 39th

cells. We can see that the 39th cell failed to depolarize and
came back to its resting potential.

get accurate intel regarding the electrical activities of the
heart tissues when specific alterations occur. As homoge-
nized model don’t allow such studies, our model seems to
provide a reasonable place to start.
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Maison de la Simulation USR 3441, Bâtiment 565 - Digiteo,
CEA Saclay, 91191 Gif-sur-Yvette cédex, France
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