
Rapport de stage

Evolutions du système de réplication de bases de

données GlobeTP

Thomas Aynaud
supervisé par Guillaume Pierre et Paolo Costa

Stage de mars à août 2007
Vrije Universiteit Amsterdam, Pays-bas

Résumé préliminaire en français

La majeure partie de ce rapport a été rédigée en anglais, d’une part car Paolo
Costa n’est pas francophone et d’autre part car mes encadrants aimeraient en
tirer une publication.

Mon stage s’est déroulé du 15 mars au 15 août à la Vrije Universiteit
d’Amsterdam, aux Pays-bas dans l’équipe de computer system. Celle-ci travaille
sur divers sujets tels que les systèmes distribués, la programmation parallèle,
des applications avancées de l’Internet. Cette équipe, dirigée par le professeur
Andrew Tanenbaum, est composée d’une dizaine de professeurs ou assistants
professeurs, d’une vingtaine de doctorants et de quelques post-doctorants.

Je travaillais plus précisément avec Guillaume Pierre et Paolo Costa, qui
étudient les méthodes d’hébergement de sites webs. Leurs travaux de recherches
portent sur les techniques de cache et de réplication afin d’obtenir des serveurs
webs (ou plus précisément l’ensemble constitué des serveurs traitant les requêtes
http, les serveurs d’application et les serveurs de bases de données) capables de
répondre plus rapidement à plus de clients simultanément.

Mon travail se fondait sur les recherches précédentes de G. Pierre et son
équipe sur la réplication de bases de données. L’objectif est de faire fonction-
ner plusieurs serveurs de bases de données ensemble dans le but d’une part
de répartir la charge de calcul entre les machines, et donc en supporter une
plus importante, et d’autre part apporter une tolérance aux défaillances d’une
ou plusieurs machines. Nous nous sommes focalisés sur les performances du
système, et dans cette optique la réplication pose certains problèmes. Pour
maintenir les différents serveurs dans le même état, chaque écriture doit être
traitée par tous les serveurs. Chaque lecture peut être traitée par un seul
serveur. Seulement, quand le nombre de serveurs augmente, la proportion de
requêtes en écriture reçues par un serveur particulier augmente (par exemple,
pour 5 serveurs, chacun reçoit environ un cinquième des lectures, mais toutes les
écritures). A partir d’un certain nombre de clients, les écritures seules suffisent
à surcharger les serveurs, et en ajouter n’apporte rien. Il faut donc pouvoir
répartir les écritures entre les serveurs, et une solution est de ne pas dupli-
quer toute la base sur chaque serveur. Ainsi, chaque serveur ne reçoit que la

1

fraction des requêtes en écriture correspondant à la fraction de la base qu’il
contient. On appelle cette approche la réplication partielle, et le système Glo-
beTP [1] utilise cette idée. Vu qu’aucun serveur ne doit contenir toute la base
de données, on ne peut pas traiter toutes les requêtes SQL possibles, car faire
travailler plusieurs serveurs sur la même requête en partageant des données reste
très problèmatique. Par conséquent, après une analyse du code de l’application
du site web, on en extrait différents modèles de requètes, et on en tire tous les
sous-ensembles de la base de données qui doivent être regroupés. Les travaux
précédents [1] proposaient un algorithme de placement de ces parties de base de
données, et étudiaient comment le système se comportait.

A partir de ces travaux, je devais étudier comment on peut faire évoluer
un système GlobeTP en fonctionnement. L’intérêt pourrait être par exemple de
rajouter un nouveau serveur, afin de répondre à une augmentation de l’audience.
Arrêter le système pendant la reconfiguration est en général impossible, on veut
pouvoir continuer à répondre tout le temps. Plusieurs problèmes se posent :

• Comment copier une table d’un serveur à un autre, sans les arrêter, alors
qu’elle est modifiée.

• Dans quel ordre effectuer ces copies.

On a donc proposé un protocole pour copier une table (ou un groupe de
tables) d’un serveur à un autre. Le protocole est en deux phases. Premièrement,
le serveur destination commence une transaction en lecture seule sur le serveur
source, et récupère toutes les données s’y trouvant au moment du début de la
transaction. Grâce aux propriétés des bases de données, les serveurs source et
destination continuent de fonctionner. Un fois ces données récupérées, le serveur
destination construit une table équivalente à celle sur le serveur source au début
de la transaction. Commence alors la deuxième phase, où le serveur destination
rattrape le serveur source en effectuant toutes les requêtes qui sont arrivées entre
temps.

On a ensuite implémenté ce protocole, et on l’a testé sur plusieurs cas.
On a étudié ce qui se passait quand les deux serveurs étaient chargés, quand
seule la source était chargée, et finalement si un serveur pouvait être la source
de plusieurs copies en parallèle. On a été assez surpris de l’efficacité de la
méthode, les copies étant quasiment transparentes pour l’utilisateur, alors qu’on
s’attendait à un impact beaucoup plus notable.

Etant donné qu’une fois une table copiée, on peut l’utiliser pour répondre
à des requêtes, l’ordre dans lequel on fait ces copies a une certaine impor-
tance. Répliquer tôt une table à laquelle on accéde peu n’aura pas beau-
coup d’impact sur les performances du système. On a donc essayé d’optimiser
les performances durant les copies en choisissant un ordonnancement adéquat.
Avant d’ordonnancer, il faut établir la liste des tâches à effectuer. On a utilisé
l’algorithme proposé dans [1] pour calculer le placement des tables. Néanmoins,
on obtient une liste de groupements de tables, et il faut les affecter à chaque
serveur, ceux-ci contenant déjà une partie des données. Affecter le groupement
table A + table B à un serveur contenant la table C alors qu’un autre contient
déjà ces deux tables serait absurde. L’affectation des groupements de tables aux
serveurs se fait à l’aide de l’algorithme dit hongrois.

Pour calculer un ordonnancement, nous avons tout d’abord modélisé la
charge du système. Nous avions des statistiques sur les requêtes soumises au

2

système, à savoir une estimation du temps pris pour y répondre et une estima-
tion de leur fréquence d’apparition. A partir de cela, on définit le coût d’une
requête comme suit :

• Pour une requête en écriture : frequence.temps

• Pour une requête en lecture : frequence.temps
nombre de serveurs pouvant la traiter

En effet, les requêtes en écritures doivent être traitées par tous les serveurs
concernés, tandis que les requêtes en lecture ne sont traitées que par un seul des
serveurs parmis ceux capables de le faire. Au final, la charge d’un serveur est
la somme des coûts des requêtes qu’il peut traiter, et la charge du système
global est le maximum des charges des serveurs. On peut donc évaluer la
charge du système après chaque copie. En considérant qu’une copie dure un
temps proportionnel à la taille de la table copiée et a un effet constant sur le
système, on peut tracer le graphe présentant la charge en fonction du temps.
On cherche à minimiser l’aire sous cette courbe. Ne trouvant pas de meilleur
moyen qu’une étude exhaustive pour calculer l’ordonnancement optimal, nous
nous sommes intéressés à une approximation par un algorithme glouton. Quand
cela était possible, on a comparé les résultats donnés par l’approche gloutonne
et l’approche exhaustive, et les résultats étaient encourageants. Le pire résultat
obtenu n’était que 60% de l’optimal. De plus, optimiser tôt la charge pouvait
être efficace en pratique. En effet, les copies allaient s’effectuer sur des systèmes
déjà très chargés, et réduire cette charge vite pouvait libérer du temps de calcul
pour les copies suivantes.

Nous avons ensuite testé ces techniques sur une application de benchmark,
RUBBoS, représentant un site de nouvelles. Nous avons aussi essayé avec
une autre application (TPC-W [2]), mais le temps a manqué pour obtenir des
résultats exploitables. Les tests ont été effectués sur la grappe de serveurs DAS-
3, hébergée en partie par la Vrije Universiteit. Les requêtes à soumettre au
système ont été pré-générées en émulant le comportement d’un visiteur, ceci
afin d’isoler la partie base de données des serveurs d’application et des serveurs
http.

Concernant les résultats sur le benchmark RUBBoS, le système arrive ef-
fectivement à migrer d’une configuration à n serveurs vers une configuration à
n+1. L’ordonnancement glouton se comporte relativement bien, mais les gains
ne sont pas spectaculaires. En effet, avec plusieurs serveurs, la surcharge de l’un
d’entre eux n’entrâıne pas une surcharge de tout le système, et c’est donc pour
le passage de 1 à 2 serveurs surtout que l’ordonnancement montre son efficacité.
L’étape suivante serait d’étudier si on peut effectivement faire plusieurs copies
en parallèle, et comment les ordonnancer.

3

1 Introduction

In the past few years, the World Wide Web has become a more and more
important communication medium for many companies and public services.
Instead of simply delivering static HTML files, they often use specific software,
called web applications, to propose news, contents, products and other things.
A typical web application dynamically generates content according to users
requests. Pages are made of some business logic running in an application
server, which is invoked each time an HTTP request is received. This business
logic, in turn, may issue any number of SQL queries to a database.

The growth of the number of users and the growth of their needs, like person-
nalization for example, are making these applications more and more complex.
Thus, the needs for scalable hosting capable of supporting high load have in-
creased. In practice, the database usually is the performance bottleneck for the
whole system.

Background

Database replication techniques can be used to improve the throughput of the
database. The approach used by most databases is full data replication where
the entire data set is duplicated to multiple servers. Read queries can thus be
dispatched across different servers. However queries that modify the application
state (Update, Delete, Insert in SQL, here after refered as UDI queries) must be
processed by every server to assure consistency of the data between servers. One
possible optimization is to perform UDI queries on one master server and other
servers just process logs of the differences, which is faster than processing the
query entirely. However, the issue is that the master server still has to process
all UDI queries, and thus becomes the performance bottleneck of the system.
The more servers there are, the higher the percentage of UDI per server is, and
this is also increased by using cache system that can only cache read queries. So,
full replication does not scale well, and better techniques are needed to improve
the database throughput.

In a previous work [1], GlobeTP, a system allowing partial replication of the
data, has been presented. Partial replication supposes that each server has only
a part of the data, so it receives only a part of the UDI queries, and is finally
less loaded. Deciding which server should have which piece of data can however
be difficult, because a query may require data items that are not all on the same
server. The main idea of GlobeTP is that typical web applications use only a
few different query templates. The database is divided in tables and each query
template require only a subset of the tables to be processed. Thus, for each
read query template, we need one server that contains all the tables required
by the query template to process it. If there exists a read query template that
requires a group of tables that is not entirely on one server, the placement of
the tables is invalid. Write queries still must be processed by every server that
contains related tables but as no server contains the whole database, servers
do not receive all the UDI. An algorithm to compute a good distribution of
the table has been proposed and this architecture appears to be really effective
compared with full replication, as the throughput was increased by 57% to 150%
compared to full replication.

4

Problem statement

However, the needs of a web application will certainly evolve. The load of
the application may grow with the number of users, so we need to adapt the
system capacity, for example by adding some servers. Another case can be a
modification of the application that requires a new organisation of the tables.
To achieve this, some tables must be copied from one node to another while
some others must be deleted on certain servers. The problem is that in many
cases stopping the system to allow a reconfiguration is simply impossible. If a
web application does not respond, clients will search another solution, and may
never come back. So we must allow the system to evolve without stopping it.
However, the copied tables keep on being modified during the copy process. The
migration process will also certainly occur on a cluster which is heavily loaded.
This drives the need for an efficient migration process that has a minimal effect
on the system performance. The difficulty is to remain able to process each
possible query during the migration without breaking consistency. The first
issue will thus be how to copy a table from one server to another without
stopping them and keeping consistency, as the data may be modified during the
process.

Secondly, if multiple such operations are required to perform a reconfigu-
ration, then the order in which they are applied can have an influence on the
system performances during reconfiguration. Indeed, as soon as a first subset
is copied, we can immediately start using it to process some queries. Thus, the
global system is, during the migration, in intermediate states that may perform
differently. For example, replication of a small table that is only readed and
never updated may have a more important impact during the migration than
starting with a huge table that is hardly accessed.

Contribution

The goal of this thesis is first to propose an algorithm to copy a table from one
database server to another one without stopping any of them, while maintain-
ing consistency. The second objective is to optimise the migration process of
multiple tables, by choosing the right scheduling for migrations. Therefore, we
first propose an algorithm to copy a table and implement it for practical testing.
Then, we study what would be an optimal scheduling, and how we can compute
a good one. All experiments are based on one benchmark application that aim
at representing a real world application.

This thesis is structured as follows : Section 2 presents related work on
database replication. Section 3 presents our algorithm to copy a table from one
server to another without stopping them. Section 4 explains how we reduced
the effect of a reconfiguration of the whole system, by minimising the number
of copies and by optimising the order of these copies. Section 5 presents the
experimental results we obtain with our implementation and discusses them.
Finally, section 6 concludes the thesis.

5

Figure 1: Web application architecture

2 Related work

2.1 Web application hosting

Typical web applications are implemented in a multi-tiers architecture as de-
scribed on Figure 1. They are often deployed on a content delivery network
using an edge-server architecture as depicted in Figure 2. Client requests are
issued to edge servers located accross the Internet. Each of them contains the
application code but no database. The database is centralized in only one site,
and receives all queries from the edge servers. This implies a wide area network
latency for the queries, so edge servers often contain local database cache sys-
tem. Thus, only cache misses and UDI are sent to the origin database, where
another cache system can be deployed to reduce the load on the database.

Several techniques have been proposed to cache the results of database
queries [3, 4, 5, 6]. Consistency of the cache must be maintained with the

Figure 2: Typical Edge-Server architecture

6

origin database. This is usually done by requesting that the application pro-
grammers specifiy query templates and their relationships. When a UDI query
arrive to the origin server, this one can identify which conflicting query tem-
plate results are modified, and thus invalidate the different caches. Many queries
can be thus answered locally, which reduces the latency and improves the total
throughput by reducing the number of queries that reach the origin database.
However, database caching systems have good hit ratio only if the database
queries exhibit high temporal locality and contain relatively few updates.

Web applications often also cache fragments of the generated pages at the
edge servers. This technique performs well, but has the same limitations as
database caching. If the queries contain many UDI or do not exhibit temporal
locality, the number of cache hits is limited. Caching techniques allow to improve
the overall system performance. However, they are not sufficient to obtain
arbitrary scalability, as their scalability bottleneck is eventually the capacity of
the origin database.

A common technique used to improve the origin database capacity is repli-
cation. The motivation is twofold : availability and scalability. Replicating
data can improve the database system tolerance to failure. Also, by distribut-
ing queries accross different database servers, the database throughput can be
increased.

2.2 Database transactions

Before discuting more about replication techniques, it is important to under-
stand database properties regarding transactions. A transaction is a group of
queries addressed to the database. At its end, a transaction can be commit-
ted (applyied) or rolled back (finally discarded). A database transaction must
conform to ACID properties :

• A : Atomicity, a transaction is a series of database operations which either
all occur, or all do not occur at all.

• C : Consistency, refers that a transaction must respect the integrity con-
straints of the database.

• I : Isolation, refers to the ability of the application to make operations in
a transaction that appear isolated from all other operations.

• D : Durability, refers to the guarantee that once the user has been notified
of success, the transaction will persist, and not be undone, even in case of
failure after the notification.

There are multiple levels of isolation between transactions. The strictest one,
serializable, specifies that all transactions occur in a completely isolated fashion,
as if all transactions in the system had executed serially. To implement this,
database systems mostly use locks or multiversion concurrency control. From
the client’s point of view, this last one provides each user connected to the
database with a snapshot of the database. The user works with this snapshot,
and changes made will not be seen by other users of the database until the
transaction is committed. This allows multiple clients to work on the database
in parallel.

7

Figure 3: Globe TP architecture

2.3 Database replication

It is more difficult to respect ACID properties when data are duplicated accross
several servers. Existing replication protocols can be divided into eager and lazy
schemes. Lazy replication allows copies to have different values and emphasises
efficiency whereas eager replication focuses on the consistency of the different
database servers. As eager replication was considered as not practical [7], many
lazy replication protocols have been proposed [8, 9]. They however lead to
conflicts between UDI that often must be solved by the client application. This
requires technical understanding by the programmers and therefore are often
considered unsatisfactory.

More recent works [10] tend to prove that eager protocols, like two phase
locking, can be practical. Eager replication is implemented by mature systems
such as mySQL [11]. However, the prime goal is reliability more than scalability.
Eager protocols must conform to 1-copy-serializability. This means that the
resulting schedule of the database must be equivalent to a serial schedule on a
single database. Another approach proposed in [12] was to use internally lazy
replication while providing 1-copy-serializability to clients. The main issue is
that one server still has to process all the UDI and thus becomes the bottleneck
of the database system.

2.4 GlobeTP

The approach at the basis of this thesis is that of GlobeTP [1]. GlobeTP
exploits partial replication to reduce the number of UDI that each server needs
to process. As described in Figure 3, the system is composed of a query router
and several database servers. Each database server contains only a subset of
the database tables. The query router knows which server contains each tables
and can route each query to a server that contains all the tables needed. This
is possible if we make the assumption that there is a finite number of query
templates. This is often true with typical web applications [6, 4, 5, 1]. Read
queries can be processed by any server that contains the tables needed while
UDI queries must be processed by every server that contains the concerned data.
So, a table that is often updated and rarely read should not be replicated on a
lot of server whereas a table that is read often must be replicated on a lot of

8

servers. [1] proposes an algorithm to optimize the table placement.

2.5 Evolution

However, in such a system, without a single master server, evolutions of the
system are more difficult. The placement also allows some optimisations on
the scheduling of the migration. This works can be compared with [13, 14].
These papers proposed systems based on a pool of database servers to handle
multiple applications. Data of one application are replicated on several servers,
but one server can contain the data from several applications. All the servers
that contain the data of one application are not always active. Some of them
are just kept almost updated in order to be added quickly to the set of active
servers in case of load spike. They have also proposed a way to predict when
one application will be overloaded. The main difference is that they are more
emphasing on a reactive system, capable of improving fastly its throughput to
react to a spike of load, rather than the evolution of a system in a long term.

3 Duplication mechanisms

3.1 Mechanisms

We will now see how we can copy one table (or a group of tables) from a ‘source’
database to ‘destination’ database. The table may be big, so the copy may take
minutes at least. During this time, UDI queries continue to arrive to the source
and the destination. Only the source is receiving UDIs concerning the considered
table. We want to achieve a point where we can say that the table on the source
and the destination are consistent i.e., they both contain the same data, and no
UDI is being processed. We assume that the database can provide serializable
isolation level and uses multiversion model [15].

The copy is realized in two phases. During the first one, the destination
reaches the state of the source at the begining of the migration whereas during
the second one, the destination catch up the source and process the queries that
are arrived during the first phase.

More precisely, we first wait for a time t where the source has no UDI in
its queue. At the time t, the destination begins a transaction (with serializable
transaction level) with the source and receive all the data it contains at this
point. During the process, all the UDI related with the table being copied
are dispatched to the nodes which contain the table before the begining of the
copy and logged by the query router. The source is still able to handle queries
concurrently since the transaction is read only and thanks to the multiversion
model. When all the data have been received by the destination, this one starts
building the table with them. At the ends of this process, the destination
is in the state the source was at the time t. The second phase begins and
the destination starts processing the logged UDI to catch up with the other
nodes. It is possible because we must assume that one node can process the
UDI faster than they arrived, or the system already experiences big performance
issues. When the log at the query router is empty, we consider the destination
consistent, and the destination is added in the routing table.

As in the GlobeTP implementation, we make the assumption that read and

9

write queries are independant operations and we do not support transactions.
One possible workaround would be to process the logs of the transactions since
the time t rather than the logged queries. We have not done this because it
would have required more work on our database system internals than desired,
and we have prefered to stay at a higher level.

3.2 Micro-benchmarks

To evaluate our copy method, we implemented it with the Postgres database [16].
Queries are numbered by order of arrival to the query router. For each group of
5000 queries, the 90th percentile of the query response time has been calculated.
This means that 90% of the queries are processed faster than the duration plot-
ted. The first 100, 000 queries are ignored and correspond to a warmup time for
the system. All the experiments have been done on a loaded system. We were
able to select the number of clients by step of 30, and experiments have been
done at the last step where 90% of the queries are processed in less than 100ms.

The first experiment aims at showing the global effect of the copy when both
source and destination are loaded.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100000 150000 200000 250000 300000

R
es

po
ns

e
tim

e

Query number

Maximum load

Figure 4: Response time of the whole system during the copy of one table

Figure 4 presents the response time of a system composed of two database
servers. One table starts being copied from the first one to the second at the
query number 200, 000 and ends at the query number 262, 000. The first server
contains initially the whole database, while the second one contains the whole
database except the copied table. The copy of the data from the source ends at
query 204, 501 and the creation of the table ends at query 261, 448. Surprisingly,
the overhead caused by the copy mechanism is much smaller than expected as
it is almost imperceptible.

The second experiment aims to show the effect of the copy on the source,
and the duration of the building of the table by the destination. If it appears
to be effective, we will not have to take care of the source during the scheduling
of the different copies.

10

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 100000 150000 200000 250000 300000 350000

R
es

po
ns

e
tim

e

Query number

Maximum load

Figure 5: Response time of the source node during the copy of one table

Figure 5 represents the copy of one big table which is not often updated. The
copy starts at the query number 200, 000. At query 203, 575 the destination has
finished to collect data from the source and starts building the table. This ends
at query 239, 294, which corresponds to the end of the first phase. As the table
copied receives few UDI, the second phase is really fast and finishes immediately
after. Clearly, this first phase has little impact on the source database. Thus,
the source will not be a concern during the scheduling of a migration. However,
the building of the table by the destination is quite slow because the data are
transmitted as a group of INSERT statements. Commercial database servers
often propose faster query replay mechanisms but we decided to keep the current
mechanisms as it can be applied without modifying the internals of the database.

We have finally studied what would happen if one server was the source of
several copies at one time to see if it is feasible.

Figure 6 represents the 90th percentile of the response time of one server
which is the source of six table copies executed in parallel. There, the per-
centile has been calculated by blocks of 3000 queries as the process is really
fast. The copies start at the query number 200, 000 and finish at the query
number 225, 000. The different destinations just get the data and do not build
the tables. The copy of the data appears to be really fast if the source and the
destination are connected by a good network, and has a very limited effect on
the source. This means that we will be able to copy multiple table from only one
source, which may facilitate the design of a protocol allowing multiple copies in
parallel.

4 Migration Planing

Now, we will study the scheduling of the migration of the different copy and
deletion. We will first see how we compute the list of the copies needed, and try
to reduce the total process length and then how to schedule the different copies.

11

 0

 50

 100

 150

 200

 100000 150000 200000 250000 300000

R
es

po
ns

e
tim

e

Query number

Maximum load

Figure 6: Response time of the source during the copy of multiple tables

4.1 Minimizing the number of copies

Let us assume we have two lists of tables that will be the lists of tables on one
server before and after the migration. We assume that a copy takes a time
proportionnal to the size of the table. Table deletion only requires a ”DROP
TABLE table (CASCADE)” SQL statement, and is really fast. We define the
cost of the migration as the sum of the size of the tables that are on the server
after the migration and not before the migration.

Next we have several servers, and for each of them the list of the tables they
contains. We have also the repartition of tables that we want to achieve after
the replication. For example, we want to add one server to the cluster :

Server 1 Server 2 Server 3
Before table 1,2 table 2,3 empty
After table 1,3 table 1 table 1,2

We consider that which server contains which part does not matter, as they
are similars, and the placement algorithm does not take into account physical
differences such as memory or cpu. The matching here is clearly suboptimal. If
we consider that all the table are of size 1, the total cost is 4 (copy 3 to server 1,
copy 1 to server 2 and copy 1 and 2 to server 3). With the following matching,
the cost is only 2 :

Server 1 Server 2 Server 3
Before table 1,2 table 2,3 empty
After table 1,2 table 1,3 table 1

This issue can be reduced to the Assignement problem. Formally :

Definition. Given two sets, X and Y , of equal size, together with a weight
function w : X × Y → <, find a bijection f : X → Y such as the cost function :∑

a∈X

w(a, f(a))

12

is minimized.

Here, X and Y are the sets of servers. w is the cost function described
precedently. This problem is solved by the Hungarian algorithm in polynomial
time. For simplicity, we do not describe this intricate algorithm here and refer
the interested readed to [17].

Now that we can list the copies and the deletion, and minimize its size, we
can discuss the different ways to obtain the destination placement. The heuristic
proposed in [1] starts with an initial valid placement and improves it at each
iteration. We focus here on the evolution of the system from n to n+1 database
servers. There are two logical possibilites :

• Use the algorithm without specific intialisation, to compute the best place-
ment possible regardless of the existing placement

• Use the algorithm initialized with the current placement plus an empty
server, hoping that it will produce a good placement, and that the system
will not change too much.

We have tested both possibilities. Both produce almost equivalent place-
ments in terms of load and in terms of cost of migration. Figure 7 and 8 show
the number of copy that will be required and the expected load with both pos-
sibilities. It appears that they are equivalent. We therfore decided to use the
first one, as it is simpler.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

N
um

be
r o

f m
ig

ra
tio

ns

Number of servers

Number of migrations

initial placement
moving from initial placement

Figure 7: Number of migration to pass from n servers to n + 1

13

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 0 2 4 6 8 10 12 14

M
ax

im
um

 lo
ad

Number of nodes

Maximum load

using placement algorithm
using moving from pacement algorithm

Figure 8: Expected load with the placements proposed by the two approachs

4.2 Scheduling of the copies

Now that we can obtain the list of the copies we have to do, we need to decide in
which order we should apply them. The optimization criterion here is that the
system should have the best possible performance during the reconfiguration.
We therefore aim at minimizing the load of the most loaded server of the cluster.
We exploit the fact that all the tables are not used identically. Some of them are
mostly read while others receive significant number of UDIs. Replicating early
a table updated often will not improve the throughput and reducing the load of
a server that is not really loaded will have no effect. Figure 9 presents what we
would expect of a“good” scheduling. It presents the load of the system during

 0

 50

 100

 150

 200

 100000 150000 200000 250000 300000 350000

R
es

po
ns

e
tim

e

Query number

Figure 9: Expected load with a good scheduling

14

several copies. The first copy starts at the query number 150, 000 and the load
raises. After the first copy (at query around 190, 000), the load improves and
continue during the other one. During a good scheduling, load would improve
fast and the system would work quickly better than before the migration.

At the opposite, Figure 10 presents what would be a“bad” scheduling. Load
do not improve until the end of the migration. Even though both schedules have
the same performance before and after reconfiguration, the first one is clearly
preferable.

 0

 50

 100

 150

 200

 100000 150000 200000 250000 300000 350000

R
es

po
ns

e
tim

e

Query number

Figure 10: Expected load with a bad scheduling

To compute a good schedule, we have to make some assumptions. First, we
consider that the duration of one copy depends only on the size of the table
copied. Next, we consider that the negative effect of one migration on the load
of a server is constant. It does not depend of the table, the source server or the
destination server.

As in [1], we have statistics on the queries that arrived. We know the average
duration of each query template and the average number of apparition of each
query template. Read queries are processed by only one node and UDI by every
node that contain related data. Thus, we can define a metric that will represent
the response time of our cluster. Each query template has a cost of :

• If it is a UDI query :

cost = query frequency× average duration

• If it is a read query :

cost =
query frequency× average duration
number of server that can process it

For each server, we define its load as the sum of the cost of the queries it can
process, and the load of the full cluster is the maximum of the load of the servers
it contains.

15

Figure 11: Expected response time of the system

Thus, we can now evaluate the load of our system at each point of the
replication. We model the replication as described in Figure 11.

The system has a given response time before reconfiguration. At the begining
of the first copy, the response time raises of a constant value (the cost) during
the copy. The copy duration depends only on the size of the table. After the
copy, the system reaches another response time level and stay at this level until
the next copy. In practice, we will start the next copy just after the end of
the precedent one. As the negative effect of one migration is constant, and the
duration only depends on the size of the table, the response time raise caused
by the copy does not depend on the order of the copies. Thus, we will ignore it.
To evaluate our scheduling, we will compute the hatched area A. Let S be our
system, c a copy or a deletion and T (c) the duration of c (0 if c is a deletion,
the size of the table copied if c is a copy). One scheduling will be a bijection
σ : [1 . . . n]→ C where C is the set of copies and deletions to process and such
as σ(i) is the ith copy. Let’s call f the function that compute the load of a
system and Sσ

i the system S after the i first copies/deletions of the scheduling
σ (an ∞ value if the system can not handle every queries), we have that :

A(σ) = f(S).T (σ(1)) +
n−1∑
i=1

(f(Sσ
i)).T (σ(i + 1)))

We want to minimize this area. f(Sσ
i) depends not only on σ(i) but also on

σ(1), σ(2), . . . , σ(i − 1) because we may, for example, first add a table t1 and
then a table t2 that will allow to process a read query template that requires
t1 and t2. To minimize A, we would need to iterate through every σ which will
certainly be too long (n! if n is the size of C). We did not find a faster way
to compute the optimal σ. Thus, we approximated the best σ with a simple
greedy algorithm. Let us consider the area B = f(S).

∑n−1
i=1 T (σ(i)). B is the

area of the graph if we do no migrations. We have that :

16

Figure 12: Expected response time of the system

B = A(σ) + remains

And remains can be calculated as :

remains =
n−1∑
i=1

{(f(Sσ
i)− f(Sσ

i−1)).
n∑

j=i+1

T (σ(j)).}

Instead of computing the area under the graph, we compute the area upside
(the hatched area of the Figure 12). As B does not depend on σ, minimizing
A(σ) is equivalent to maximizing the remains. The final algorithm is algo-
rithm 1, where c(S) is the system S after the copy or deletion c.

Algorithm 1 Greedy algorithm to compute a good scheduling
C ← {copies/deletions}
for i = 1 to |C| do

find c which maximizes (f(c(S))− f(S)).
∑

c′∈C−c T (c′)
C ← C − {c}
S ← S after the application of c
σ(i)← c

end for

We tested this greedy heuristic and compared it with cases where we were
able to compute the optimal scheduling by brute force. It appears that the
greedy algorithm performs very well. In 14 cases out of 22, greedy found the
optimal scheduling. In 4 cases it found a scheduling whose metric is greater
than 90% of the best. With the 4 remaining tests, it never finds a scheduling
whose metrics is less than 60% of the best metric. We have no proof about the
solution quality except these tests.

Greedy also has the advantage to try to optimise the load of the system as
early as possible. As the database servers are loaded at the begining, reducing
the load early may leave some process time for the other copies. We therefore
expected it to perform well in real situations. We present such experimental
results on real applications in the next section.

17

5 Experimental evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 0 100000 200000 300000 400000 500000 600000 700000 800000

90
th

 p
er

ce
nt

ile
 re

sp
on

se
 ti

m
e

Query number

greedy scheduling
optimal scheduling

 0

 20

 40

 60

 80

 100

 120

 140

 0 100000 200000 300000 400000 500000 600000 700000 800000

90
th

 p
er

ce
nt

ile
 re

sp
on

se
 ti

m
e

Query number

greedy scheduling
no migration

Figure 13: Response time of the system during the migration from 1 to 2
database servers with RUBBoS (300 EBs)

To test our algorithm, we first implemented them. The implementation is
composed of several pieces of software.

First, one Java application implements the algorithms to compute the opti-
mal and the approximated scheduling and output them in files readed by the
query router to apply them.

Next, there is the database system. It is composed of one query router, that
route a database workload generated in advance, and of several PostgreSQL ver-
sion 8.1.3 servers [16]. We use only the cost-based routing algorithm presented
in [1]. The query router, developped in Java, has been extended to allow it to
do a migration. It reads its orders generated by the first application, starts the
different copies, logs the needed queries and finally updates its routing tables.

18

The first phase of a copy is handled by a Postgres utility called pg dump that do
a transaction with a selected Postgres to collect its data and output a file that
contains all the SQL statement to generate the selected data. It is generally
used for database backup, but it does exactly what we need for the first phase
of the table replication. The query router works with the help of a server, writ-
ten in C, which runs on every node that contains a database server, to do some
local processing for the migration that the database or the query router cannot
handle. For example, it has to run the utility pg dump, to apply the dump to
the local database and to inform the query router of its progress.

We used one well-known benchmark applications to test our system. RUB-
BoS [18] is a web application that simulate a bulletin-board like slashdot.org. In
a typical news forum like RUBBoS, users will frequently access the more recent
news while queries that require several tables are quite rare.

The RUBBoS database is composed of five tables, which are queried by 36
read and 8 UDI templates. The database is initially filled with 500,000 users
and approximately 200,000 comments, resulting in a database of more than 700
MB. We used the same workloads as in [1]. They have been generated by the
execution of Emulated Browsers (EBs). Each EB acts as a markov chain, where
pages are the nodes, and transitions are the links between pages. The differ-
ent transition probabilities are generated to model the behavior of a standard
user. Each benchmark is run several times under low load (30EBs), and the
corresponding queries have been collected. To generate workload representat-
ing more users, we merge these small workloads. For exemple, a workload of
300 EBs is the result of the merge of ten workloads of 30 EBs. Replaying a
query workload allow us to focus on the performances of the database tier alone
with no interference from the application itself.

All the experiments have been performed on the DAS-3 cluster [19]. Each
server, running Linux, has two AMD Opteron dual-core processors running at
2.4 Ghz with 4GB of memory. They are connected to each other with gigabit
LAN, so the network latency between the server is negligible.

We conducted several experiments that implement a reconfiguration from a
cluster of k database servers to a cluster of k + 1. The queries have been num-
bered and packed in group. We have plotted the 90th percentile of the response
time for each groups. That means that 90% of the queries are answered faster
than the duration plotted. The size of one group depends on the experiment.
All experiments were made on a relatively loaded system. For each experiment,
we selected the highest multiple of 30 EBs such that 90% of the queries were
returned within 100ms. The experiments start with a warmup time of 100, 000
queries, to allow the database servers to load all their data. Next, we plot
100, 000 queries without any table copy to see the normal behavior of the sys-
tem. The migration starts at the query 200, 000. At the end of the migrations,
we still process 100, 000 queries to observe the behavior of the system after the
migration.

Figures 13 and 14 show the system performance during a reconfiguration
of RUBBoS from 1 to 2 database servers, and from 4 to 5. The scheduling of
reconfiguration actions here are slightly different than those described in section
4. We forced all the table deletions to the end, which reduces the number of
tasks to schedule and allows to compute the optimal schedule as a reference.
We have selected the migration from 1 to 2 and from 4 to 5 because, in these
cases, the greedy algorithm did not find the optimal scheduling. We can thus

19

compare the response time during a migration with a greedy scheduling, an
optimal scheduling (as computed with the metric of Section 4), and without any
migration. It appears that the greedy scheduling is really close to the optimal
one. There are some load spikes, but they also appears without migration,
and are just consequences of peaks in the workload itself. Moreover, if we
compare the greedy scheduling response time and the response time without
migration, we see that the greedy one is almost always lower. Its response time
is worse mostly at the begining and before the migration (due to imprecision
in the measures). This is logical, at the very begining of the migration, both
systems are identical except that one server is being dumped. The response
time always stay in acceptable range (less than 100ms), except during peaks
in the workload. This means that our migration process is truly practical, and
can be used provided that the system is not already overloaded (where queries
arrive faster than the system can process them). However, these schedulings
appear to be less and less usefull as the number of servers raise. It is due to
the fact that the copies are only between two servers, and their changes have
no consequences for the full system.

20

 0

 5

 10

 15

 20

 25

 30

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

90
th

 p
er

ce
nt

ile
 re

sp
on

se
 ti

m
e

Query number

greedy scheduling
optimal scheduling

 0

 5

 10

 15

 20

 25

 30

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

90
th

 p
er

ce
nt

ile
 re

sp
on

se
 ti

m
e

Query number

greedy scheduling
no migration

Figure 14: Response time of the system during the migration from 4 to 5
database servers with RUBBoS (660 EBs)

6 Conclusion

We have proposed a way to reconfigure a database replication system based
on partial replication. This process has been optimized, first to minimize the
number of copies and second to exploit the partial replication to use the new
servers as soon as possible. This allows to reconfigure the system, for example, to
add some servers to the cluster or to change the application code and introduce
new query templates.

The migration process is practical. After a short period, the load of the
system is lower than without migration, while copies are still processed. Thus,
if the database is not dramatically overloaded, the reconfiguration is feasible
and the queries reponse time is quickly reduced.

We have not yet studied the practical possibility to perform parallel migra-

21

tions. Tables are copied one after the other, but, as the effect of the copy is
limited, we may speed up the process by, for example, allowing the server 1 to
get a table from the server 0 while the server 3 gets a table from server 2. The
system may need to do this after some first copies to be less loaded during the
multiple copies. The greedy scheduling could be used for each server. Each
database receives the list of the tables it will receive, schedules this list with the
greedy algorithm, and does its copies sequentially.

Finally, I would like to thank my supervisors at the Vrije Universiteit, Guil-
laume Pierre and Paolo Costa. I am particularly gratefull to them for their
guidances and constructive criticisms about my work and their understanding,
even of my english. Distributed systems and web hosting was not my speciality,
and I have learnt a lot of things with them.

References

[1] T. Groothuyse, S. Sivasubramanian, and G. Pierre, “Globetp: template-
based database replication for scalable web applications,” in WWW ’07:
Proceedings of the 16th international conference on World Wide Web, (New
York, NY, USA), pp. 301–310, ACM Press, 2007.

[2] “http://www.tpc.org/tpcw/.”

[3] J. Challenger, P. Dantzig, A. Iyengar, and K. Witting, “A fragment-based
approach for efficiently creating dynamic web content,” ACM Trans. Inter.
Tech., vol. 5, no. 2, pp. 359–389, 2005.

[4] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. Maggs, and T. Mowry,
“A scalability service for dynamic web applications,” 2005.

[5] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso, “Globecbc:
Content-blind result caching for dynamic web applications,” Submitted for
publication, Vrije Universiteit, June, 2005.

[6] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan, “Dbproxy: A dynamic
data cache for web applications,” icde, vol. 00, p. 821, 2003.

[7] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication
and a solution,” in SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD
international conference on Management of data, (New York, NY, USA),
pp. 173–182, ACM Press, 1996.

[8] C. Pu and A. Leff, “Replica control in distributed systems: as asynchronous
approach,” in SIGMOD ’91: Proceedings of the 1991 ACM SIGMOD in-
ternational conference on Management of data, (New York, NY, USA),
pp. 377–386, ACM Press, 1991.

[9] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi, “Exploiting atomic
broadcast in replicated databases (extended abstract),” in Euro-Par ’97:
Proceedings of the Third International Euro-Par Conference on Parallel
Processing, (London, UK), pp. 496–503, Springer-Verlag, 1997.

22

[10] B. Kemme and G. Alonso, “Don’t be lazy, be consistent: Postgres-r, a new
way to implement database replication,” in VLDB ’00: Proceedings of the
26th International Conference on Very Large Data Bases, (San Francisco,
CA, USA), pp. 134–143, Morgan Kaufmann Publishers Inc., 2000.

[11] M. Ronström and L. Thalmann, “Mysql cluster architecture overview,”
tech. rep., MySQL Technical White Paper, April 2004.

[12] C. Plattner and G. Alonso, “Ganymed: scalable replication for trans-
actional web applications,” in Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, (New York,
NY, USA), pp. 155–174, Springer-Verlag New York, Inc., 2004.

[13] G. Soundararajan and C. Amza, “Reactive provisioning of backend
databases in shared dynamic content server clusters,” ACM Trans. Auton.
Adapt. Syst., vol. 1, no. 2, pp. 151–188, 2006.

[14] G. Soundararajan, C. Amza, and A. Goel, “Database replication policies
for dynamic content applications,” in EuroSys ’06: Proceedings of the 2006
EuroSys conference, (New York, NY, USA), pp. 89–102, ACM Press, 2006.

[15] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[16] “http://www.postgresql.org/.”

[17] J. Munkres, “Algorithms for assignment and transportation problems,”
Journal of the Society for Industrial and Applied Mathematics, vol. Vol-
ume 5, March 1957.

[18] “http://jmob.objectweb.org/rubbos.html.”

[19] “www.cs.vu.nl/das3/.”

23

