Chromatic number and Clique number of tournaments

Guillaume Aubian - Charles University
joint work with
Pierre Aboulker - ENS
Pierre CHARBIT - IRIF - Université Paris-Cité
Raul Lopes - LIRMM

February 16, 2024

The chromatic number

Colouring: adjacent vertices receive distinct colours.

$\chi=5$

$\chi=3$

$\chi=3$

Chromatic number of $G=\chi(G)$: minimise the number of colours.

The chromatic number

Colouring: adjacent vertices receive distinct colours.

$\chi=5$

$\chi=3$

$\chi=3$

Chromatic number of $G=\chi(G)$: minimise the number of colours.
Complexity : Deciding if $\chi \leq k$ is polynomial for $k=1,2$, NP-hard if $k \geq 3$

A General question

What does it mean to have large chromatic number?

A General question

What does it mean to have large chromatic number?

Which substructures must appear if χ is large enough?

A General question

What does it mean to have large chromatic number?

Which substructures must appear if χ is large enough?

Equivalently, what families \mathcal{F} are such that $\operatorname{Forb}(\mathcal{F})$ has bounded χ ?

$$
\operatorname{Forb}(\mathcal{F})=\{G: \forall H \in \mathcal{F}, H \text { is not a induced subgraph of } G\}
$$

A General question

What does it mean to have large chromatic number?

Which substructures must appear if χ is large enough?

What finite families \mathcal{F} are such that $\operatorname{Forb}(\mathcal{F})$ has bounded χ ?
$\operatorname{Forb}(\mathcal{F})=\{G: \forall H \in \mathcal{F}, H$ is not a induced subgraph of $G\}$

A General question

Why does a graph have large chromatic number?

A General question

Why does a graph have large chromatic number?

Because it contains a large clique.

A General question

Why does a graph have large chromatic number?

Must it contain a large clique?

A General question

Why does a graph have large chromatic number?

Must it contain a large clique?
NO : There exist triangle-free graphs with arbitrarily large χ

$$
\text { Forb }\left(\left\{C_{3}\right\}\right) \text { has unbounded } \chi
$$

A General question

Why does a graph have large chromatic number?

Must it contain a short cycle?

A General question

Why does a graph have large chromatic number?

Must it contain a short cycle?
NO : Erdős: There exist graphs with arbitrarily large χ and arbitrarily large girth (shortest cycle length)

Forb $\left(\left\{C_{3}, C_{4}, \ldots, C_{k}\right\}\right)$ has unbounded χ

Clique number versus chromatic number

Question: Why does a graph have large chromatic number?

Clique number versus chromatic number

Question: Why does a graph have large chromatic number?
(Partial) Answer: because it has a large clique
(but there exist triangle-free graphs with arbitrarily large chromatic number).

Clique number versus chromatic number

Question: Why does a graph have large chromatic number?
(Partial) Answer: because it has a large clique
(but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs \mathcal{C} if χ-bounded if there exists a function f such that:

$$
\text { for every } G \in \mathcal{C}, \chi(G) \leq f(\omega(G)) \text {. }
$$

Clique number versus chromatic number

Question: Why does a graph have large chromatic number?
(Partial) Answer: because it has a large clique
(but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs \mathcal{C} if χ-bounded if there exists a function f such that:

$$
\text { for every } G \in \mathcal{C}, \chi(G) \leq f(\omega(G))
$$

Perfect graphs: χ-bounded by the function $f(x)=x$.

Clique number versus chromatic number

Question: Why does a graph have large chromatic number?
(Partial) Answer: because it has a large clique
(but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs \mathcal{C} if χ-bounded if there exists a function f such that:

$$
\text { for every } G \in \mathcal{C}, \chi(G) \leq f(\omega(G))
$$

Perfect graphs: χ-bounded by the function $f(x)=x$.

Gyárfás-Sumner Conjecture

Let H be a graph. The class of H-free graphs is χ-bounded if and only if H is a forest.

Colouring digraphs

- Colouring a digraph D : no monochromatic (induced) directed cycle.
- $\vec{\chi}(D)$: the dichromatic number of D.

$$
\vec{\chi}=2
$$

$$
\vec{\chi}=3
$$

Dichromatic number generalises chromatic number

G : a graph \overleftrightarrow{G} : the digraph obtained by replacing each edge of G by a digon

Theorem: $\chi(G)=\vec{\chi}(\stackrel{G}{G})$.

G

\overleftrightarrow{G}

Complexity : Deciding if $\chi \leq k$ is polynomial for $k=1$, NP-hard if $k \geq 2$

Digraphs with Large $\vec{\chi}$?

For unoriented graphs, graphs with large χ ?

Digraphs with Large $\vec{\chi}$?

For unoriented graphs, graphs with large χ ?
\Rightarrow Complete graphs $\chi\left(K_{n}\right)=n$

Oriented graphs with Large $\vec{\chi}$?

For digraphs, easy consider symmetric cliques $\overleftrightarrow{K_{k}}$:

Oriented graphs with Large $\vec{\chi}$?

For digraphs, easy consider symmetric cliques $\overleftrightarrow{K_{k}}$:

For oriented graphs (no digon) ?
Any Orientation of complete graphs (aka tournaments) ?

Oriented graphs with Large $\vec{\chi}$?

For digraphs, easy consider symmetric cliques $\overleftrightarrow{K_{k}}$:

For oriented graphs (no digon) ?
Any Orientation of complete graphs (aka tournaments) ?

NO because transitive tournaments : $\vec{\chi}\left(T T_{k}\right)=1$

Oriented graphs with Large $\vec{\chi}$?

A recursive construction with $\vec{\chi}\left(S_{k}\right)=k$

Oriented graphs with Large $\vec{\chi}$?

A recursive construction with $\vec{\chi}\left(S_{k}\right)=k$

Oriented Graphs with Large $\vec{\chi}$?

A recursive construction with $\vec{\chi}\left(S_{k}\right)=k$

What is the clique number of a digraph?

We would like that, for every graph G and every digraph D :

$$
\omega(G)=\vec{\omega}(\overleftrightarrow{G}) \quad \text { and } \vec{\omega}(D) \leq \vec{\chi}(D)
$$

What is the clique number of a digraph?

We would like that, for every graph G and every digraph D :

$$
\omega(G)=\vec{\omega}(\overleftrightarrow{G}) \text { and } \vec{\omega}(D) \leq \vec{\chi}(D)
$$

First attempt:

$\vec{\omega}(D)=$ size of a maximum symmetric clique in D.
But for every oriented graphs $G, \vec{\omega}(G)=1$, not very satisfying.

What is the clique number of a digraph?

We would like that, for every graph G and every digraph D :

$$
\omega(G)=\vec{\omega}(\overleftrightarrow{G}) \text { and } \vec{\omega}(D) \leq \vec{\chi}(D)
$$

First attempt:

$\vec{\omega}(D)=$ size of a maximum symmetric clique in D.
But for every oriented graphs $G, \vec{\omega}(G)=1$, not very satisfying.

Second attempt:

$\vec{\omega}(D)=$ size for a maximum transitive tournament of D.
Interesting, but does not satisfy $\vec{\omega}(D) \leq \vec{\chi}(D)$.

Backedge graph

Let D be a digraph given with a total order \prec on $V(D)$.
Define the backedge graph D^{\prec} be the undirected graph with vertex set $V(D)$ and edge $u v$ if $u \prec v$ and $v u \in A(D)$.

Backedge graph

Let D be a digraph given with a total order \prec on $V(D)$.
Define the backedge graph D^{\prec} be the undirected graph with vertex set $V(D)$ and edge $u v$ if $u \prec v$ and $v u \in A(D)$.

Backedge graph

Let D be a digraph given with a total order \prec on $V(D)$.
Define the backedge graph D^{\prec} be the undirected graph with vertex set $V(D)$ and edge $u v$ if $u \prec v$ and $v u \in A(D)$.

Backedge graph

Let D be a digraph given with a total order \prec on $V(D)$.
Define the backedge graph D^{\prec} be the undirected graph with vertex set $V(D)$ and edge $u v$ if $u \prec v$ and $v u \in A(D)$.

For every \prec :

$$
\vec{\chi}(D) \leq \chi\left(D^{\prec}\right)
$$

Backedge graph

Let D be a digraph given with a total order \prec on $V(D)$.
Define the backedge graph D^{\prec} be the undirected graph with vertex set $V(D)$ and edge $u v$ if $u \prec v$ and $v u \in A(D)$.

For every \prec :

$$
\vec{\chi}(D) \leq \chi\left(D^{\prec}\right)
$$

Moreover, there exists \prec such that $\chi\left(D^{\prec}\right) \leq \vec{\chi}(D)$.

Backedge graph

Let D be a digraph given with a total order \prec on $V(D)$.
Define the backedge graph D^{\prec} be the undirected graph with vertex set $V(D)$ and edge $u v$ if $u \prec v$ and $v u \in A(D)$.

For every \prec :

$$
\vec{\chi}(D) \leq \chi\left(D^{\prec}\right)
$$

Moreover, there exists \prec such that $\chi\left(D^{\prec}\right) \leq \vec{\chi}(D)$.
Hence:

$$
\vec{\chi}(D)=\min \left\{\chi\left(D^{\prec}\right): \prec \text { is a total order of } V(D)\right\}
$$

Clique number of digraphs

So we have a new definition of the dichromatic number:

$$
\vec{\chi}(D)=\min \left\{\chi\left(D^{\prec}\right): \prec \text { is a total order of } V(D)\right\}
$$

This leads a natural definition of the clique number of a digraph:

$$
\vec{\omega}(D)=\min \left\{\omega\left(D^{\prec}\right): \prec \text { is a total order on } V(D)\right\}
$$

Clique number of digraphs

So we have a new definition of the dichromatic number:

$$
\vec{\chi}(D)=\min \left\{\chi\left(D^{\prec}\right): \prec \text { is a total order of } V(D)\right\}
$$

This leads a natural definition of the clique number of a digraph:

$$
\vec{\omega}(D)=\min \left\{\omega\left(D^{\prec}\right): \prec \text { is a total order on } V(D)\right\}
$$

We clearly have:

- $\vec{\omega}(\overleftrightarrow{G})=\omega(G)$ (because for every $\prec, \overleftrightarrow{G}^{\prec}=G$), and
- $\vec{\omega}(D) \leq \vec{\chi}(D)$.

Tournaments with arbitrarily large clique number

Tournaments can have large dichromatic number. Remember S_{k}

Tournaments with arbitrarily large clique number

Tournaments can have large dichromatic number. Remember S_{k}

Question

Can we find tournaments with arbitrarily large clique number?

Tournaments with arbitrarily large clique number

Let $\tilde{S}_{1}=T T_{1}$ and inductively, for $n \geq 1$, let $\tilde{S}_{n}=\Delta\left(\tilde{S}_{n-1}, \tilde{S}_{n-1}, \tilde{S}_{n-1}\right)$.

Lemma

For any integer $n, \vec{\omega}\left(\tilde{S}_{n}\right) \geq n$.

A useful inequality

Theorem (Nguyen, Scott, Seymour, 2023)
For every tournament T and every ordering \prec of $V(T)$.

$$
\frac{\chi\left(T^{\prec}\right)}{\omega\left(T^{\prec}\right)} \leq \vec{\chi}(T) \leq \chi\left(T^{\prec}\right)
$$

A useful inequality

Theorem (Nguyen, Scott, Seymour, 2023)
For every tournament T and every ordering \prec of $V(T)$.

$$
\frac{\chi\left(T^{\prec}\right)}{\omega\left(T^{\prec}\right)} \leq \vec{\chi}(T) \leq \chi\left(T^{\prec}\right)
$$

A useful inequality

Theorem (Nguyen, Scott, Seymour, 2023)
For every tournament T and every ordering \prec of $V(T)$.

$$
\frac{\chi\left(T^{\prec}\right)}{\omega\left(T^{\prec}\right)} \leq \vec{\chi}(T) \leq \chi\left(T^{\prec}\right)
$$

... ordered by \prec

A useful inequality

Theorem (Nguyen, Scott, Seymour, 2023)
For every tournament T and every ordering \prec of $V(T)$.

$$
\frac{\chi\left(T^{\prec}\right)}{\omega\left(T^{\prec}\right)} \leq \vec{\chi}(T) \leq \chi\left(T^{\prec}\right)
$$

... ordered by \prec

colour with with "max length back path"

A useful inequality

Theorem (Nguyen, Scott, Seymour, 2023)
For every tournament T and every ordering \prec of $V(T)$.

$$
\frac{\chi\left(T^{\prec}\right)}{\omega\left(T^{\prec}\right)} \leq \vec{\chi}(T) \leq \chi\left(T^{\prec}\right)
$$

... ordered by \prec

colour with with "max length back path"
It gives a colouring with at most $\omega\left(T^{\prec}\right)$ colors
Repeat for the $\vec{\chi}(T)$ color classes

A class of tournaments \mathcal{T} is $\vec{\chi}$-bounded if there exists a function f such that, for every $T \in \mathcal{T}$,

$$
\vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

A class of tournaments \mathcal{T} is $\vec{\chi}$-bounded if there exists a function f such that, for every $T \in \mathcal{T}$,

$$
\vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

Substitution

Theorem (Folklore)
If \mathcal{C} is χ-bounded, then so is $\mathcal{C}^{\text {subst }}$

Substitution

Theorem (Folklore)
If \mathcal{C} is χ-bounded, then so is $\mathcal{C}^{\text {subst }}$
$\mathcal{C}^{\text {subst }}$: class obtained by repeated substitution operations :

Substitution

Theorem (Folklore)

If \mathcal{C} is χ-bounded, then so is $\mathcal{C}^{\text {subst }}$
$\mathcal{C}^{\text {subst }}$: class obtained by repeated substitution operations :

Substitution

Theorem (Folklore)

If \mathcal{C} is χ-bounded, then so is $\mathcal{C}^{\text {subst }}$
$\mathcal{C}^{\text {subst }}$: class obtained by repeated substitution operations :

Substitution

Theorem (Folklore)

If \mathcal{C} is χ-bounded, then so is $\mathcal{C}^{\text {subst }}$
$\mathcal{C}^{\text {subst }}$: class obtained by repeated substitution operations :

Example : $\mathcal{C}=\left\{K_{1}, K_{2}\right\}$

$\mathcal{C}^{\text {subst }}=$ cliques

Substitution

Theorem (Folklore)

If \mathcal{C} is χ-bounded, then so is $\mathcal{C}^{\text {subst }}$
$\mathcal{C}^{\text {subst }}$: class obtained by repeated substitution operations :

Example : $\mathcal{C}=\left\{K_{1}, K_{2}, \overline{K_{2}}\right\}$

$$
\begin{aligned}
\mathcal{C}^{\text {subst }} & =\text { cographs } \\
& \left(P_{4} \text {-free }\right)
\end{aligned}
$$

 or

Substitution

Theorem

If \mathcal{T} is $\vec{\chi}$-bounded, so is $\mathcal{T}^{\text {subst }}$

Substitution

Theorem

If \mathcal{T} is $\vec{\chi}$-bounded, so is $\mathcal{T}^{\text {subst }}$

Example : $\mathcal{C}=\left\{K_{1}, \overrightarrow{K_{2}}, \overrightarrow{C_{3}}\right\} \quad \stackrel{K_{1}}{\bullet} \stackrel{\overrightarrow{K_{2}}}{\longrightarrow}$

Substitution

Theorem

If \mathcal{T} is $\vec{\chi}$-bounded, so is $\mathcal{T}^{\text {subst }}$

Conjecture

Let \mathcal{D} be a class of digraphs. If \mathcal{D} is $\vec{\chi}$-bounded, then so is $\mathcal{D}^{\text {subst }}$.

Substitution

Theorem

If \mathcal{T} is $\vec{\chi}$-bounded, so is $\mathcal{T}^{\text {subst }}$

Conjecture

Let \mathcal{D} be a class of digraphs. If \mathcal{D} is $\vec{\chi}$-bounded, then so is $\mathcal{D}^{\text {subst }}$.
Theorem (Chudnovsky, Penev, Scott, Trotignon, 2013)
If a class of graphs \mathcal{C} is polynomially χ-bounded, then so is $\mathcal{C}^{\text {subst }}$.

Substitution

Theorem

If \mathcal{T} is $\vec{\chi}$-bounded, so is $\mathcal{T}^{\text {subst }}$

Conjecture

Let \mathcal{D} be a class of digraphs. If \mathcal{D} is $\vec{\chi}$-bounded, then so is $\mathcal{D}^{\text {subst }}$.
Theorem (Chudnovsky, Penev, Scott, Trotignon, 2013)
If a class of graphs \mathcal{C} is polynomially χ-bounded, then so is $\mathcal{C}^{\text {subst }}$.
Question: Is it true that if \mathcal{T} is polynomially $\vec{\chi}$-bounded, then so is $\mathcal{T}^{\text {subst }}$?

A class of tournaments \mathcal{T} is $\vec{\chi}$-bounded if there exists a function f such that, for every $T \in \mathcal{T}$,

$$
\vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

A class of tournaments \mathcal{T} is $\vec{\chi}$-bounded if there exists a function f such that, for every $T \in \mathcal{T}$,

$$
\vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

Classes of tournaments defined by forbidding a single tournament

Given a tournament $H, \operatorname{Forb}(H)$ is the class of tournaments T such that T does not contain H as a subtournament.

Question

For which tournament H there exists a function f_{H} such that:

$$
T \in \operatorname{Forb}(H) \Rightarrow \vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

We say that such that H are $\vec{\chi}$-binding.

The most trivial case of χ-bounding function is a constant function.

Heroes

The most trivial case of χ-bounding function is a constant function.

Question

For which tournament H there exists a number c_{H} such that

$$
T \in \operatorname{Forb}(H) \Rightarrow \vec{\chi}(T) \leq c_{H}
$$

Heroes

The most trivial case of χ-bounding function is a constant function.

Question

For which tournament H there exists a number c_{H} such that

$$
T \in \operatorname{Forb}(H) \Rightarrow \vec{\chi}(T) \leq c_{H}
$$

Such tournaments are called heroes.

Heroes

The most trivial case of χ-bounding function is a constant function.

Question

For which tournament H there exists a number c_{H} such that

$$
T \in \operatorname{Forb}(H) \Rightarrow \vec{\chi}(T) \leq c_{H}
$$

Such tournaments are called heroes.
Theorem (Berger Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé, 2013)
A tournament H is a hero if and only if:

- $H=K_{1}$.
- $H=\left(H_{1} \Rightarrow H_{2}\right)$
- $H=\Delta\left(1, T T_{k}, H_{1}\right)$ or $H=\Delta\left(1, H, T T_{k}\right)$, where $k \geq 1$ and H_{1} is a hero.

A detour: Gentlemen

Hero

A tournament H is a hero if there exists a number c_{H} such that

$$
T \in \operatorname{Forb}(H) \Rightarrow \vec{\chi}(T) \leq c_{H}
$$

Let us define the analogue for $\vec{\omega}$:

Gentlemen

A tournament H is a gentlemen if there exists a number c_{H} such that

$$
T \in \operatorname{Forb}(H) \Rightarrow \vec{\omega}(T) \leq c_{H}
$$

Of course, all heroes are gentlemen since $\vec{\omega} \leq \vec{\chi}$

Gentlemen and heroes are the same

Theorem

Heroes and gentlemen are the same.

Proof:

- We want to prove Gentlemen \Rightarrow Hero (the converse is obvious)
- Take a minimal counter-example H.
- Consider the sequence of tournaments $S_{1}, S_{2}, S_{3}, \ldots$.
- We proved that they have arbitrarily large $\vec{\omega}$, so must contain H
- So H is of the form $\Delta(1, A, B)$ (because H must be strong by minimality)
- Nguyen, Scott and Seymour proved $S_{3}=\Delta\left(1, \vec{C}_{3}, \vec{C}_{3}\right)$ is not a gentlemen, so H does not contain S_{3}
- So one of A or B is a transitive tournament and the other is a gentlemen and thus a hero by induction
- So H is a hero

Recall that we want to characterize those :
A tournament H is $\vec{\chi}$-bounding if there exists a function f_{H} such that:

$$
T \in \operatorname{Forb}(H) \Rightarrow \vec{\chi}(T) \leq f(\vec{\omega}(T))
$$

Theorem

H is $\vec{\chi}$-bounding $\Rightarrow H$ has an ordering \prec such that H^{\prec} is a forest.

Theorem

H is $\vec{\chi}$-bounding $\Rightarrow H$ has an ordering \prec such that H^{\prec} is a forest.
Proof :

- Let H be a tournament such that no backedge graph of H is a forest.

Theorem

H is $\vec{\chi}$-bounding $\Rightarrow H$ has an ordering \prec such that H^{\prec} is a forest.
Proof:

- Let H be a tournament such that no backedge graph of H is a forest.
- Let \mathcal{C} be a the class of (undirected) graph with girth at least $|V(H)|+1$.

Theorem

H is $\vec{\chi}$-bounding $\Rightarrow H$ has an ordering \prec such that H^{\prec} is a forest.
Proof :

- Let H be a tournament such that no backedge graph of H is a forest.
- Let \mathcal{C} be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.

Theorem

H is $\vec{\chi}$-bounding $\Rightarrow H$ has an ordering \prec such that H^{\prec} is a forest.
Proof :

- Let H be a tournament such that no backedge graph of H is a forest.
- Let \mathcal{C} be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H -free

Theorem

H is $\vec{\chi}$-bounding $\Rightarrow H$ has an ordering \prec such that H^{\prec} is a forest.
Proof :

- Let H be a tournament such that no backedge graph of H is a forest.
- Let \mathcal{C} be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H -free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has $\operatorname{girth}|V(H)|+1$.

Theorem

H is $\vec{\chi}$-bounding $\Rightarrow H$ has an ordering \prec such that H^{\prec} is a forest.
Proof :

- Let H be a tournament such that no backedge graph of H is a forest.
- Let \mathcal{C} be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H -free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth $|V(H)|+1$.
- Hence, for every $X \subseteq T$ such that $|X|=|V(H)|, T^{\prec}[X]$ is a forest, and thus distinct from H.

Theorem

H is $\vec{\chi}$-bounding $\Rightarrow H$ has an ordering \prec such that H^{\prec} is a forest.
Proof :

- Let H be a tournament such that no backedge graph of H is a forest.
- Let \mathcal{C} be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H -free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth $|V(H)|+1$.
- Hence, for every $X \subseteq T$ such that $|X|=|V(H)|, T^{\prec}[X]$ is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\vec{\omega}(T) \leq 2$.

Theorem

H is $\vec{\chi}$-bounding $\Rightarrow H$ has an ordering \prec such that H^{\prec} is a forest.
Proof:

- Let H be a tournament such that no backedge graph of H is a forest.
- Let \mathcal{C} be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H -free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth $|V(H)|+1$.
- Hence, for every $X \subseteq T$ such that $|X|=|V(H)|, T^{\prec}[X]$ is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\vec{\omega}(T) \leq 2$.
- Moreover, by a celebrated theorem of Erdős, graph in \mathcal{C} can have arbitrarily large chromatic number.

Theorem

H is $\vec{\chi}$-bounding $\Rightarrow H$ has an ordering \prec such that H^{\prec} is a forest.
Proof :

- Let H be a tournament such that no backedge graph of H is a forest.
- Let \mathcal{C} be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H -free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth $|V(H)|+1$.
- Hence, for every $X \subseteq T$ such that $|X|=|V(H)|, T^{\prec}[X]$ is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\vec{\omega}(T) \leq 2$.
- Moreover, by a celebrated theorem of Erdős, graph in \mathcal{C} can have arbitrarily large chromatic number.
- Hence, by the Nguyen et al. inequality, there are tournaments in $\mathcal{T}[\mathcal{C}]$ can have arbitrarily large dichromatic number.

Theorem

H is $\vec{\chi}$-bounding $\Rightarrow H$ has an ordering \prec such that H^{\prec} is a forest.
Proof :

- Let H be a tournament such that no backedge graph of H is a forest.
- Let \mathcal{C} be a the class of (undirected) graph with girth at least $|V(H)|+1$.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H -free
- Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth $|V(H)|+1$.
- Hence, for every $X \subseteq T$ such that $|X|=|V(H)|, T^{\prec}[X]$ is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\vec{\omega}(T) \leq 2$.
- Moreover, by a celebrated theorem of Erdős, graph in \mathcal{C} can have arbitrarily large chromatic number.
- Hence, by the Nguyen et al. inequality, there are tournaments in $\mathcal{T}[\mathcal{C}]$ can have arbitrarily large dichromatic number.
- So $\mathcal{T}[\mathcal{C}]$ is not $\vec{\chi}$-bounded, and thus H -free tournaments is not

Gyárfás-Sumner Conjecture for tournaments ?

Conjecture

Let H be a tournament. Forb (H) is $\vec{\chi}$-bounded if and only if H has an ordering \prec for which H^{\prec} is a forest.

Gyárfás-Sumner Conjecture for tournaments ?

Conjecture

Let H be a tournament. Forb (H) is $\vec{\chi}$-bounded if and only if H has an ordering \prec for which H^{\prec} is a forest.

Recall that:
Gyárfás-Sumner Conjecture, 1981
Let H be a graph. Forb(H) is χ-bounded if and only if H is a forest.

Gyárfás-Sumner Conjecture for tournaments ?

Conjecture

Let H be a tournament. $\operatorname{For} b(H)$ is $\vec{\chi}$-bounded if and only if H has an ordering \prec for which H^{\prec} is a forest.

Recall that:

Gyárfás-Sumner Conjecture, 1981

Let H be a graph. Forb(H) is χ-bounded if and only if H is a forest.

We proved:

- the only if part (previous slide)
- it is enough to prove it for trees instead of forests,
- If H_{1} and H_{2} are $\vec{\chi}$-binding, then so is $H_{1} \Rightarrow H_{2}$,
- It holds for $H=T\left[\vec{P}_{k}\right]$.

Closure par complete join

Theorem

If H_{1} and H_{2} are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

We need the following very nice "local to global" result :
Theorem (Le, Harutyunyan, Thomassé and Wu, 2017)
There exists a function λ such that, if for every vertex $v), \vec{\chi}\left(T\left[N^{+}(v)\right]\right) \leq t$, then $\vec{\chi}(T) \leq \lambda(t)$.

Closure par complete join

Theorem

If H_{1} and H_{2} are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Proof.

- Let $H=H_{1} \Rightarrow H_{2}$. We prove the result by induction on $k=\vec{\omega}$

Closure par complete join

Theorem

If H_{1} and H_{2} are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Proof.

- Let $H=H_{1} \Rightarrow H_{2}$. We prove the result by induction on $k=\vec{\omega}$
- There exists $g(k)$ such that every H-free tournament of clique number at most k has $\vec{\chi}$ at most $g(k)$

Closure par complete join

Theorem

If H_{1} and H_{2} are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Proof.

- Let $H=H_{1} \Rightarrow H_{2}$. We prove the result by induction on $k=\vec{\omega}$
- There exists $g(k)$ such that every H-free tournament of clique number at most k has $\vec{\chi}$ at most $g(k)$
- Let T be a H-free tournament of clique number $k+1$.

Closure par complete join

Theorem

If H_{1} and H_{2} are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Proof.

- Let $H=H_{1} \Rightarrow H_{2}$. We prove the result by induction on $k=\vec{\omega}$
- There exists $g(k)$ such that every H-free tournament of clique number at most k has $\vec{\chi}$ at most $g(k)$
- Let T be a H-free tournament of clique number $k+1$.
- Let \prec be an $\vec{\omega}$-ordering of T.

Closure par complete join

Theorem

If H_{1} and H_{2} are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Proof.

- Let $H=H_{1} \Rightarrow H_{2}$. We prove the result by induction on $k=\vec{\omega}$
- There exists $g(k)$ such that every H-free tournament of clique number at most k has $\vec{\chi}$ at most $g(k)$
- Let T be a H-free tournament of clique number $k+1$.
- Let \prec be an $\vec{\omega}$-ordering of T.
- Say the arc $u v$ is heavy if $\vec{\chi}(T[N(u v)]) \geq 2 g(k)+1$, and light otherwise.

Closure par complete join

Theorem

If H_{1} and H_{2} are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Proof.

- Let $H=H_{1} \Rightarrow H_{2}$. We prove the result by induction on $k=\vec{\omega}$
- There exists $g(k)$ such that every H-free tournament of clique number at most k has $\vec{\chi}$ at most $g(k)$
- Let T be a H-free tournament of clique number $k+1$.
- Let \prec be an $\vec{\omega}$-ordering of T.
- Say the arc $u v$ is heavy if $\vec{\chi}(T[N(u v)]) \geq 2 g(k)+1$, and light otherwise.
- If $u v$ is a heavy arc, then $v \prec u$

Closure par complete join

Theorem

If H_{1} and H_{2} are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Proof.

- Let $H=H_{1} \Rightarrow H_{2}$. We prove the result by induction on $k=\vec{\omega}$
- There exists $g(k)$ such that every H-free tournament of clique number at most k has $\vec{\chi}$ at most $g(k)$
- Let T be a H-free tournament of clique number $k+1$.
- Let \prec be an $\vec{\omega}$-ordering of T.
- Say the arc $u v$ is heavy if $\vec{\chi}(T[N(u v)]) \geq 2 g(k)+1$, and light otherwise.
- If $u v$ is a heavy arc, then $v \prec u$
- For every u,

$$
\min \left(\vec{\chi}\left(T\left[N^{-}(u)\right]\right), \vec{\chi}\left(T\left[N^{+}(u)\right]\right) \leq f(k+1)+g(k)+2 h g(k)\right.
$$

Closure par complete join

Theorem

If H_{1} and H_{2} are $\vec{\chi}$-binding, then so it $H_{1} \Rightarrow H_{2}$.

Proof.

- Let $H=H_{1} \Rightarrow H_{2}$. We prove the result by induction on $k=\vec{\omega}$
- There exists $g(k)$ such that every H-free tournament of clique number at most k has $\vec{\chi}$ at most $g(k)$
- Let T be a H-free tournament of clique number $k+1$.
- Let \prec be an $\vec{\omega}$-ordering of T.
- Say the arc $u v$ is heavy if $\vec{\chi}(T[N(u v)]) \geq 2 g(k)+1$, and light otherwise.
- If $u v$ is a heavy arc, then $v \prec u$
- For every u,

$$
\min \left(\vec{\chi}\left(T\left[N^{-}(u)\right]\right), \vec{\chi}\left(T\left[N^{+}(u)\right]\right) \leq f(k+1)+g(k)+2 h g(k)\right.
$$

- $V(D)$ can be partitionned into two sets of bounded dichromatic number

A counterexample by G. Aubian

Construction :

Complexity

Question

what is the complexity of deciding if a tournament T has $\vec{\omega}(T) \leq k$?

Complexity

Question

what is the complexity of deciding if a tournament T has $\vec{\omega}(T) \leq k$?

- For $k=1$ decide if acyclic: easy
- For any $k \geq 3$, G. Aubian claims NP-hard
- For $k=2$?

Complexity

Question

what is the complexity of deciding if a tournament T has $\vec{\omega}(T) \leq k$?

- For $k=1$ decide if acyclic: easy
- For any $k \geq 3$, G. Aubian claims NP-hard
- For $k=2$?

We have an approximation result :
Theorem: given a tournament T, we can decide in poly-time if $\vec{\omega}(T) \geq 3$, or $\vec{\omega}(T) \leq 10^{10}$

Complexity

Question

what is the complexity of deciding if a tournament T has $\vec{\omega}(T) \leq k$?

- For $k=1$ decide if acyclic: easy
- For any $k \geq 3$, G. Aubian claims NP-hard
- For $k=2$?

We have an approximation result :
Theorem: given a tournament T, we can decide in poly-time if $\vec{\omega}(T) \geq 3$, or $\vec{\omega}(T) \leq 10^{10}$
Lemma: If $\vec{\omega}(T) \leq 2$ and $N_{\vec{C}_{3}}(x y) \geq 3$, then $y \prec x$ in every $\vec{\omega}$-ordering.

Complexity

Question

what is the complexity of deciding if a tournament T has $\vec{\omega}(T) \leq k$?

- For $k=1$ decide if acyclic: easy
- For any $k \geq 3$, G. Aubian claims NP-hard
- For $k=2$?

We have an approximation result :
Theorem: given a tournament T, we can decide in poly-time if $\vec{\omega}(T) \geq 3$, or $\vec{\omega}(T) \leq 10^{10}$
Lemma: If $\vec{\omega}(T) \leq 2$ and $N_{\vec{C}_{3}}(x y) \geq 3$, then $y \prec x$ in every $\vec{\omega}$-ordering.
Colouring 2-colourable tournaments [Klingelhoefer and Newman, 2023]: we can decide in polytime if, given a tournament $T: \vec{\chi}(T) \geq 3$, or $\vec{\chi}(T) \leq 10$

Complexity

Question

what is the complexity of deciding if a tournament T has $\vec{\omega}(T) \leq k$?

- For $k=1$ decide if acyclic: easy
- For any $k \geq 3$, G. Aubian claims NP-hard
- For $k=2$?

We have an approximation result :
Theorem: given a tournament T, we can decide in poly-time if $\vec{\omega}(T) \geq 3$, or $\vec{\omega}(T) \leq 10^{10}$
Lemma: If $\vec{\omega}(T) \leq 2$ and $N_{\vec{C}_{3}}(x y) \geq 3$, then $y \prec x$ in every $\vec{\omega}$-ordering.
Colouring 2-colourable tournaments [Klingelhoefer and Newman, 2023]: we can decide in polytime if, given a tournament T : $\vec{\chi}(T) \geq 3$, or $\vec{\chi}(T) \leq 10$

Arc local to global Theorem [Klingelhoefer and Newman, 2023] If G is an oriented graph such that $\alpha(G) \leq \alpha$, and $N_{\vec{C}_{3}}(x y) \leq k$, then $\vec{\chi}(G) \leq f(\alpha, k)$.

Some more open questions

Conjecture: The class of tournaments with twinwidth at most k is $\vec{\chi}$-bounded.

Conjecture (Large $\vec{\omega}$ implies a $\vec{\omega}$-cluster) There exists two functions f and ℓ such that, for every integer k, every tournament T with $\vec{\omega}(T) \geq f(k)$ contains a subtournament X with $|X| \leq \ell(k)$ and $\vec{\omega}(X) \geq k$.

Conjecture: There exists a function g such that, if $\vec{\omega}\left(N^{+}(v)\right) \leq t$ for every vertex v, then $\vec{\omega}(T) \leq g(t)$.

Conjecture: for every n-vertex tournament $T, \vec{\omega}(T)=O(\log (n))$ Thank You For Your Attention

