Chromatic number and Clique number of tournaments

Guillaume Aubian - Charles University

joint work with

Pierre Aboulker - ENS Pierre CHARBIT - IRIF - Université Paris-Cité Raul Lopes - LIRMM

February 16, 2024

The chromatic number

Colouring: adjacent vertices receive distinct colours.

Chromatic number of $G = \chi(G)$: minimise the number of colours.

The chromatic number

Colouring: adjacent vertices receive distinct colours.

Chromatic number of $G = \chi(G)$: minimise the number of colours.

Complexity: Deciding if $\chi \leq k$ is polynomial for k = 1, 2, NP-hard if $k \geq 3$

2

What does it mean to have large chromatic number?

What does it mean to have large chromatic number?

Which substructures must appear if χ is large enough?

What does it mean to have large chromatic number?

Which substructures must appear if χ is large enough?

Equivalently, what families \mathcal{F} are such that $Forb(\mathcal{F})$ has bounded χ ?

 $Forb(\mathcal{F}) = \{G : \forall H \in \mathcal{F}, H \text{ is not a induced subgraph of } G\}$

What does it mean to have large chromatic number?

Which substructures must appear if χ is large enough?

What **finite** families \mathcal{F} are such that $Forb(\mathcal{F})$ has bounded χ ?

 $Forb(\mathcal{F}) = \{G : \forall H \in \mathcal{F}, H \text{ is not a induced subgraph of } G\}$

Why does a graph have large chromatic number?

Why does a graph have large chromatic number?

Because it contains a large clique.

Why does a graph have large chromatic number?

Must it contain a large clique?

Why does a graph have large chromatic number?

Must it contain a large clique?

NO : There exist triangle-free graphs with arbitrarily large χ

Forb($\{C_3\}$) has unbounded χ

Why does a graph have large chromatic number?

Must it contain a short cycle?

Why does a graph have large chromatic number?

Must it contain a short cycle?

NO : Erdős : There exist graphs with arbitrarily large χ and arbitrarily large girth (shortest cycle length)

 $Forb(\{C_3, C_4, \dots, C_k\})$ has unbounded χ

Question: Why does a graph have large chromatic number?

Question: Why does a graph have large chromatic number?

(Partial) Answer: because it has a large clique (but there exist triangle-free graphs with arbitrarily large chromatic number).

Question: Why does a graph have large chromatic number?

(Partial) Answer: because it has a large clique (but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C if χ -bounded if there exists a function f such that:

for every
$$G \in \mathcal{C}$$
, $\chi(G) \leq f(\omega(G))$.

Question: Why does a graph have large chromatic number?

(Partial) Answer: because it has a large clique (but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C if χ -bounded if there exists a function f such that:

for every
$$G \in \mathcal{C}$$
, $\chi(G) \leq f(\omega(G))$.

Perfect graphs: χ -bounded by the function f(x) = x.

Question: Why does a graph have large chromatic number?

(Partial) Answer: because it has a large clique (but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C if χ -bounded if there exists a function f such that:

for every
$$G \in \mathcal{C}$$
, $\chi(G) \leq f(\omega(G))$.

Perfect graphs: χ -bounded by the function f(x) = x.

Gyárfás-Sumner Conjecture

Let H be a graph. The class of H-free graphs is χ -bounded if and only if H is a forest.

Colouring digraphs

- Colouring a digraph *D*: no monochromatic (induced) directed cycle.
- $\overrightarrow{\chi}(D)$: the dichromatic number of D.

Dichromatic number generalises chromatic number

G: a graph \overrightarrow{G} : the digraph obtained by replacing each edge of G by a digon

Theorem: $\chi(G) = \overrightarrow{\chi}(\overleftarrow{G})$.

Complexity : Deciding if $\chi \leq k$ is polynomial for k=1 , NP-hard if $k \geq 2$

For unoriented graphs, graphs with large χ ?

For unoriented graphs, graphs with large χ ?

 \Rightarrow Complete graphs $\chi(K_n) = n$

For digraphs, easy consider symmetric cliques $\overleftrightarrow{K_k}$:

For digraphs, easy consider symmetric cliques $\overleftrightarrow{K_k}$:

For oriented graphs (no digon)?

Any Orientation of complete graphs (aka tournaments)?

For digraphs, easy consider symmetric cliques $\overleftarrow{\mathcal{K}_k}$:

For oriented graphs (no digon)?

Any Orientation of complete graphs (aka tournaments) ?

NO because transitive tournaments : $\overrightarrow{\chi}(TT_k) = 1$

A recursive construction with $\overrightarrow{\chi}(S_k) = k$

A recursive construction with $\overrightarrow{\chi}(S_k) = k$

A recursive construction with $\overrightarrow{\chi}(S_k) = k$

What is the clique number of a digraph?

We would like that, for every graph G and every digraph D:

$$\omega(G) = \overrightarrow{\omega}(\overrightarrow{G}) \quad \text{and} \quad \overrightarrow{\omega}(D) \leq \overrightarrow{\chi}(D)$$

What is the clique number of a digraph?

We would like that, for every graph G and every digraph D:

$$\omega(G) = \overrightarrow{\omega}(\overrightarrow{G})$$
 and $\overrightarrow{\omega}(D) \leq \overrightarrow{\chi}(D)$

First attempt:

 $\overrightarrow{\omega}(D) = \text{size of a maximum symmetric clique in } D.$

But for every oriented graphs G, $\overrightarrow{\omega}(G) = 1$, not very satisfying.

What is the clique number of a digraph?

We would like that, for every graph G and every digraph D:

$$\omega(G) = \overrightarrow{\omega}(\overrightarrow{G}) \quad \text{and} \quad \overrightarrow{\omega}(D) \leq \overrightarrow{\chi}(D)$$

First attempt:

 $\overrightarrow{\omega}(D) = \text{size of a maximum symmetric clique in } D.$

But for every oriented graphs G, $\overrightarrow{\omega}(G) = 1$, not very satisfying.

Second attempt:

 $\overrightarrow{\omega}(D) = \text{size for a maximum transitive tournament of } D.$

Interesting, but does not satisfy $\overrightarrow{\omega}(D) \leq \overrightarrow{\chi}(D)$.

Let D be a digraph given with a total order \prec on V(D). Define the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

Let D be a digraph given with a total order \prec on V(D). Define the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

Let D be a digraph given with a total order \prec on V(D). Define the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

Let D be a digraph given with a total order \prec on V(D). Define the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

For every \prec :

$$\overrightarrow{\chi}(D) \leq \chi(D^{\prec})$$

Let D be a digraph given with a total order \prec on V(D).

Define the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

For every \prec :

$$\overrightarrow{\chi}(D) \leq \chi(D^{\prec})$$

Moreover, there exists \prec such that $\chi(D^{\prec}) \leq \overrightarrow{\chi}(D)$.

Backedge graph

Let D be a digraph given with a total order \prec on V(D).

Define the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

For every \prec :

$$\overrightarrow{\chi}(D) \leq \chi(D^{\prec})$$

Moreover, there exists \prec such that $\chi(D^{\prec}) \leq \overrightarrow{\chi}(D)$.

Hence:

$$\overrightarrow{\chi}(D) = \min \{\chi(D^{\prec}) : \prec \text{ is a total order of } V(D)\}$$

Clique number of digraphs

So we have a new definition of the dichromatic number:

$$\overrightarrow{\chi}(D) = \min \{\chi(D^{\prec}) : \prec \text{ is a total order of } V(D)\}$$

This leads a natural definition of the clique number of a digraph:

$$\overrightarrow{\omega}(D) = \min \ \{\omega(D^{\prec}) : \prec \text{ is a total order on } V(D)\}$$

Clique number of digraphs

So we have a new definition of the dichromatic number:

$$\overrightarrow{\chi}(D) = \min \{\chi(D^{\prec}) : \prec \text{ is a total order of } V(D)\}$$

This leads a natural definition of the clique number of a digraph:

$$\overrightarrow{\omega}(D) = \min \ \{\omega(D^{\prec}) : \prec \text{ is a total order on } V(D)\}$$

We clearly have:

- $\overrightarrow{\omega}(\overleftarrow{G}) = \omega(G)$ (because for every \prec , $\overleftarrow{G}^{\prec} = G$), and
- $\overrightarrow{\omega}(D) \leq \overrightarrow{\chi}(D)$.

Tournaments with arbitrarily large clique number

Tournaments can have large dichromatic number. Remember S_k

Tournaments with arbitrarily large clique number

Tournaments can have large dichromatic number. Remember S_k

Question

Can we find tournaments with arbitrarily large clique number?

Tournaments with arbitrarily large clique number

Let $\tilde{S}_1 = TT_1$ and inductively, for $n \geq 1$, let $\tilde{S}_n = \Delta(\tilde{S}_{n-1}, \tilde{S}_{n-1}, \tilde{S}_{n-1})$.

Lemma

For any integer n, $\overrightarrow{\omega}(\widetilde{S}_n) \geq n$.

Theorem (Nguyen, Scott, Seymour, 2023)

For every tournament T and every ordering \prec of V(T).

$$\frac{\chi(T^{\prec})}{\omega(T^{\prec})} \leq \overrightarrow{\chi}(T) \leq \chi(T^{\prec})$$

Theorem (Nguyen, Scott, Seymour, 2023)

For every tournament T and every ordering \prec of V(T).

$$\frac{\chi(T^{\prec})}{\omega(T^{\prec})} \leq \overrightarrow{\chi}(T) \leq \chi(T^{\prec})$$

Theorem (Nguyen, Scott, Seymour, 2023)

For every tournament T and every ordering \prec of V(T).

$$\frac{\chi(T^{\prec})}{\omega(T^{\prec})} \leq \overrightarrow{\chi}(T) \leq \chi(T^{\prec})$$

Theorem (Nguyen, Scott, Seymour, 2023)

For every tournament T and every ordering \prec of V(T).

$$\frac{\chi(T^{\prec})}{\omega(T^{\prec})} \leq \overrightarrow{\chi}(T) \leq \chi(T^{\prec})$$

colour with with "max length back path"

Theorem (Nguyen, Scott, Seymour, 2023)

For every tournament T and every ordering \prec of V(T).

$$\frac{\chi(T^{\prec})}{\omega(T^{\prec})} \leq \overrightarrow{\chi}(T) \leq \chi(T^{\prec})$$

colour with with "max length back path"

It gives a colouring with at most $\omega(T^{\prec})$ colors

Repeat for the $\overrightarrow{\chi}(T)$ color classes

$\overrightarrow{\chi}$ -bounded class of tournaments

A class of tournaments \mathcal{T} is $\overrightarrow{\chi}$ -bounded if there exists a function f such that, for every $T \in \mathcal{T}$,

$$\overrightarrow{\chi}(T) \leq f(\overrightarrow{\omega}(T))$$

$\overrightarrow{\chi}$ -bounded class of tournaments

A class of tournaments \mathcal{T} is $\overrightarrow{\chi}$ -bounded if there exists a function f such that, for every $T \in \mathcal{T}$,

$$\overrightarrow{\chi}(T) \leq f(\overrightarrow{\omega}(T))$$

Theorem (Folklore)

If $\mathcal C$ is χ -bounded, then so is $\mathcal C^{\mathrm{subst}}$

Theorem (Folklore)

If C is χ -bounded, then so is C^{subst}

Theorem (Folklore)

If C is χ -bounded, then so is C^{subst}

Theorem (Folklore)

If C is χ -bounded, then so is C^{subst}

Theorem (Folklore)

If C is χ -bounded, then so is C^{subst}

Example :
$$C = \{K_1, K_2\}$$

$$\mathcal{C}^{subst}$$
=cliques

Theorem (Folklore)

If C is χ -bounded, then so is C^{subst}

Example:
$$C = \{K_1, K_2, \overline{K_2}\}$$
 K_1
 K_2
 K_2

Theorem

If $\mathcal T$ is $\overrightarrow{\chi}$ -bounded , so is $\mathcal T^{\text{subst}}$

Theorem

If \mathcal{T} is $\overrightarrow{\chi}$ -bounded , so is $\mathcal{T}^{\text{subst}}$

Example :
$$C = \{K_1, \overrightarrow{K_2}, \overrightarrow{C_3}\}$$

$$C^{subst} = \text{All subgraphs of } \tilde{S}_k$$

Theorem

If \mathcal{T} is $\overrightarrow{\chi}$ -bounded, so is \mathcal{T}^{subst}

Conjecture

Let $\mathcal D$ be a class of digraphs. If $\mathcal D$ is $\overrightarrow{\chi}$ -bounded, then so is $\mathcal D^{subst}$.

Theorem

If \mathcal{T} is $\overrightarrow{\chi}$ -bounded, so is $\mathcal{T}^{\text{subst}}$

Conjecture

Let \mathcal{D} be a class of digraphs. If \mathcal{D} is $\overrightarrow{\chi}$ -bounded, then so is \mathcal{D}^{subst} .

Theorem (Chudnovsky, Penev, Scott, Trotignon, 2013)

If a class of graphs C is polynomially χ -bounded, then so is C^{subst} .

Theorem

If \mathcal{T} is $\overrightarrow{\chi}$ -bounded, so is $\mathcal{T}^{\text{subst}}$

Conjecture

Let $\mathcal D$ be a class of digraphs. If $\mathcal D$ is $\overrightarrow{\chi}$ -bounded, then so is $\mathcal D^{subst}$.

Theorem (Chudnovsky, Penev, Scott, Trotignon, 2013)

If a class of graphs C is polynomially χ -bounded, then so is C^{subst} .

Question: Is it true that if \mathcal{T} is polynomially $\overrightarrow{\chi}$ -bounded, then so is \mathcal{T}^{subst} ?

$\overrightarrow{\chi}$ -bounded class of tournaments

A class of tournaments \mathcal{T} is $\overrightarrow{\chi}$ -bounded if there exists a function f such that, for every $T \in \mathcal{T}$,

$$\overrightarrow{\chi}(T) \leq f(\overrightarrow{\omega}(T))$$

$\overrightarrow{\chi}$ -bounded class of tournaments

A class of tournaments \mathcal{T} is $\overrightarrow{\chi}$ -bounded if there exists a function f such that, for every $T \in \mathcal{T}$,

$$\overrightarrow{\chi}(T) \leq f(\overrightarrow{\omega}(T))$$

Classes of tournaments defined by forbidding a single tournament

Given a tournament H, Forb(H) is the class of tournaments T such that T does not contain H as a subtournament.

Question

For which tournament H there exists a function f_H such that :

$$T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq f(\overrightarrow{\omega}(T))$$

We say that such that H are $\overrightarrow{\chi}$ -binding.

The most trivial case of χ -bounding function is a constant function.

The most trivial case of χ -bounding function is a constant function.

Question

For which tournament H there exists a number c_H such that

$$T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq c_H$$

The most trivial case of χ -bounding function is a constant function.

Question

For which tournament H there exists a number c_H such that

$$T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq c_H$$

Such tournaments are called heroes.

The most trivial case of χ -bounding function is a constant function.

Question

For which tournament H there exists a number c_H such that

$$T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq c_H$$

Such tournaments are called heroes.

Theorem (Berger Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé, 2013)

A tournament H is a hero if and only if:

- $H = K_1$.
- $\bullet \ H = (H_1 \Rightarrow H_2)$
- $H = \Delta(1, TT_k, H_1)$ or $H = \Delta(1, H, TT_k)$, where $k \ge 1$ and H_1 is a hero.

A detour : Gentlemen

Hero

A tournament H is a hero if there exists a number c_H such that

$$T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq c_H$$

Let us define the analogue for $\overrightarrow{\omega}$:

Gentlemen

A tournament H is a gentlemen if there exists a number c_H such that

$$T \in Forb(H) \Rightarrow \overrightarrow{\omega}(T) \leq c_H$$

Of course, all heroes are gentlemen since $\overrightarrow{\omega} \leq \overrightarrow{\chi}$

Gentlemen and heroes are the same

Theorem

Heroes and gentlemen are the same.

Proof:

- We want to prove Gentlemen ⇒ Hero (the converse is obvious)
- Take a minimal counter-example *H*.
- Consider the sequence of tournaments S_1, S_2, S_3, \ldots
- ullet We proved that they have arbitrarily large $\overrightarrow{\omega}$, so must contain H
- So H is of the form $\Delta(1, A, B)$ (because H must be strong by minimality)
- Nguyen, Scott and Seymour proved $S_3=\Delta(1,\vec{C_3},\vec{C_3})$ is not a gentlemen, so H does not contain S_3
- So one of A or B is a transitive tournament and the other is a gentlemen and thus a hero by induction
- So H is a hero

$\overrightarrow{\chi}$ -bounding tournaments

Recall that we want to characterize those :

A tournament H is $\overrightarrow{\chi}$ -bounding if there exists a function f_H such that :

$$T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq f(\overrightarrow{\omega}(T))$$

$\overrightarrow{\chi}$ -bounding tournaments - A necessary condition

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow H has an ordering \prec such that H^{\prec} is a forest.

$\overrightarrow{\chi}$ -bounding tournaments - A necessary condition

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow H has an ordering \prec such that H^{\prec} is a forest.

Proof:

 \bullet Let H be a tournament such that no backedge graph of H is a forest.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow H has an ordering \prec such that H^{\prec} is a forest.

- \bullet Let H be a tournament such that no backedge graph of H is a forest.
- ullet Let ${\mathcal C}$ be a the class of (undirected) graph with girth at least |V(H)|+1.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow H has an ordering \prec such that H^{\prec} is a forest.

- \bullet Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- ullet Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow H has an ordering \prec such that H^{\prec} is a forest.

- \bullet Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H-free

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow H has an ordering \prec such that H^{\prec} is a forest.

- \bullet Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow H has an ordering \prec such that H^{\prec} is a forest.

- \bullet Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.
 - Hence, for every $X \subseteq T$ such that |X| = |V(H)|, $T^{\prec}[X]$ is a forest, and thus distinct from H.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow H has an ordering \prec such that H^{\prec} is a forest.

- \bullet Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.
 - Hence, for every $X \subseteq T$ such that |X| = |V(H)|, $T^{\prec}[X]$ is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\overrightarrow{\omega}(T) \leq 2$.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow H has an ordering \prec such that H^{\prec} is a forest.

- \bullet Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.
 - Hence, for every $X \subseteq T$ such that |X| = |V(H)|, $T^{\prec}[X]$ is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\overrightarrow{\omega}(T) \leq 2$.
- ullet Moreover, by a celebrated theorem of Erdős, graph in ${\cal C}$ can have arbitrarily large chromatic number.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow H has an ordering \prec such that H^{\prec} is a forest.

- \bullet Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.
 - Hence, for every $X \subseteq T$ such that |X| = |V(H)|, $T^{\prec}[X]$ is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\overrightarrow{\omega}(T) \leq 2$.
- ullet Moreover, by a celebrated theorem of Erdős, graph in ${\mathcal C}$ can have arbitrarily large chromatic number.
- ullet Hence, by the Nguyen et al. inequality, there are tournaments in $\mathcal{T}[\mathcal{C}]$ can have arbitrarily large dichromatic number.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow H has an ordering \prec such that H^{\prec} is a forest.

- \bullet Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- ullet Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is H-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.
 - Hence, for every $X \subseteq T$ such that |X| = |V(H)|, $T^{\prec}[X]$ is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\overrightarrow{\omega}(T) \leq 2$.
- ullet Moreover, by a celebrated theorem of Erdős, graph in ${\mathcal C}$ can have arbitrarily large chromatic number.
- ullet Hence, by the Nguyen et al. inequality, there are tournaments in $\mathcal{T}[\mathcal{C}]$ can have arbitrarily large dichromatic number.
- So $\mathcal{T}[\mathcal{C}]$ is not $\overrightarrow{\chi}$ -bounded, and thus H-free tournaments is not $\overrightarrow{\chi}$ -bounded

Gyárfás-Sumner Conjecture for tournaments?

Conjecture

Let H be a tournament. Forb(H) is $\overrightarrow{\chi}$ -bounded if and only if H has an ordering \prec for which H^{\prec} is a forest.

Gyárfás-Sumner Conjecture for tournaments?

Conjecture

Let H be a tournament. Forb(H) is $\overrightarrow{\chi}$ -bounded if and only if H has an ordering \prec for which H^{\prec} is a forest.

Recall that:

Gyárfás-Sumner Conjecture, 1981

Let H be a graph. Forb(H) is χ -bounded if and only if H is a forest.

Gyárfás-Sumner Conjecture for tournaments?

Conjecture

Let H be a tournament. Forb(H) is $\overrightarrow{\chi}$ -bounded if and only if H has an ordering \prec for which H^{\prec} is a forest.

Recall that:

Gyárfás-Sumner Conjecture, 1981

Let H be a graph. Forb(H) is χ -bounded if and only if H is a forest.

We proved:

- the only if part (previous slide)
- it is enough to prove it for trees instead of forests,
- If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so is $H_1 \Rightarrow H_2$,
- It holds for $H = T[\vec{P}_k]$.

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so it $H_1 \Rightarrow H_2$.

We need the following very nice "local to global" result :

Theorem (Le, Harutyunyan, Thomassé and Wu, 2017)

There exists a function λ such that, if for every vertex v), $\overrightarrow{\chi}(T[N^+(v)]) \leq t$, then $\overrightarrow{\chi}(T) \leq \lambda(t)$.

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so it $H_1 \Rightarrow H_2$.

Proof.

• Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so it $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- There exists g(k) such that every H-free tournament of clique number at most k has $\overrightarrow{\chi}$ at most g(k)

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so it $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- There exists g(k) such that every H-free tournament of clique number at most k has $\overrightarrow{\chi}$ at most g(k)
- Let T be a H-free tournament of clique number k + 1.

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so it $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- There exists g(k) such that every H-free tournament of clique number at most k has $\overrightarrow{\chi}$ at most g(k)
- Let T be a H-free tournament of clique number k + 1.
- Let \prec be an $\overrightarrow{\omega}$ -ordering of T.

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so it $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- There exists g(k) such that every H-free tournament of clique number at most k has $\overrightarrow{\chi}$ at most g(k)
- Let T be a H-free tournament of clique number k + 1.
- Let \prec be an $\overrightarrow{\omega}$ -ordering of T.
- Say the arc uv is heavy if $\overrightarrow{\chi}(T[N(uv)]) \ge 2g(k) + 1$, and light otherwise.

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so it $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- There exists g(k) such that every H-free tournament of clique number at most k has $\overrightarrow{\chi}$ at most g(k)
- Let T be a H-free tournament of clique number k + 1.
- Let \prec be an $\overrightarrow{\omega}$ -ordering of T.
- Say the arc uv is heavy if $\overrightarrow{\chi}(T[N(uv)]) \ge 2g(k) + 1$, and light otherwise.
- If uv is a heavy arc, then $v \prec u$

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so it $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- There exists g(k) such that every H-free tournament of clique number at most k has $\overrightarrow{\chi}$ at most g(k)
- Let T be a H-free tournament of clique number k + 1.
- Let \prec be an $\overrightarrow{\omega}$ -ordering of T.
- Say the arc uv is heavy if $\overrightarrow{\chi}(T[N(uv)]) \geq 2g(k) + 1$, and light otherwise.
- If uv is a heavy arc, then $v \prec u$
- For every u, $\min(\overrightarrow{\chi}(T[N^-(u)]), \overrightarrow{\chi}(T[N^+(u)]) \le f(k+1) + g(k) + 2hg(k)$.

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so it $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- There exists g(k) such that every H-free tournament of clique number at most k has $\overrightarrow{\chi}$ at most g(k)
- Let T be a H-free tournament of clique number k + 1.
- Let \prec be an $\overrightarrow{\omega}$ -ordering of T.
- Say the arc uv is heavy if $\overrightarrow{\chi}(T[N(uv)]) \ge 2g(k) + 1$, and light otherwise.
- If uv is a heavy arc, then $v \prec u$
- For every u, $\min(\overrightarrow{\chi}(T[N^-(u)]), \overrightarrow{\chi}(T[N^+(u)]) \le f(k+1) + g(k) + 2hg(k)$.
- ullet V(D) can be partitionned into two sets of bounded dichromatic number

A counterexample by G. Aubian

Construction:

Question

what is the complexity of deciding if a tournament T has $\overrightarrow{\omega}(T) \leq k$?

Question

what is the complexity of deciding if a tournament T has $\overrightarrow{\omega}(T) \leq k$?

- For k = 1 decide if acyclic : easy
- For any $k \ge 3$, G. Aubian claims NP-hard
- For k = 2 ?

Question

what is the complexity of deciding if a tournament T has $\overrightarrow{\omega}(T) \leq k$?

- For k = 1 decide if acyclic : easy
- For any $k \ge 3$, G. Aubian claims NP-hard
- For k = 2 ?

We have an approximation result :

Theorem: given a tournament T, we can decide in poly-time if $\overrightarrow{\omega}(T) \geq 3$, or $\overrightarrow{\omega}(T) \leq 10^{10}$

Question

what is the complexity of deciding if a tournament T has $\overrightarrow{\omega}(T) \leq k$?

- For k = 1 decide if acyclic : easy
- For any $k \ge 3$, G. Aubian claims NP-hard
- For k = 2 ?

We have an approximation result:

Theorem: given a tournament T, we can decide in poly-time if $\overrightarrow{\omega}(T) \geq 3$, or $\overrightarrow{\omega}(T) \leq 10^{10}$

Lemma: If $\overrightarrow{\omega}(T) \leq 2$ and $N_{\vec{C_3}}(xy) \geq 3$, then $y \prec x$ in every $\overrightarrow{\omega}$ -ordering.

Question

what is the complexity of deciding if a tournament T has $\overrightarrow{\omega}(T) \leq k$?

- For k = 1 decide if acyclic : easy
- For any $k \ge 3$, G. Aubian claims NP-hard
- For k = 2 ?

We have an approximation result:

Theorem: given a tournament T, we can decide in poly-time if $\overrightarrow{\omega}(T) \geq 3$, or $\overrightarrow{\omega}(T) \leq 10^{10}$

Lemma: If $\overrightarrow{\omega}(T) \leq 2$ and $N_{\overrightarrow{C_3}}(xy) \geq 3$, then $y \prec x$ in every $\overrightarrow{\omega}$ -ordering.

COLOURING 2-COLOURABLE TOURNAMENTS [Klingelhoefer and Newman, 2023]: we can decide in polytime if, given a tournament $T: \overrightarrow{\chi}(T) \geq 3$, or $\overrightarrow{\chi}(T) \leq 10$

Question

what is the complexity of deciding if a tournament T has $\overrightarrow{\omega}(T) \leq k$?

- For k = 1 decide if acyclic : easy
- For any $k \ge 3$, G. Aubian claims NP-hard
- For k = 2 ?

We have an approximation result :

Theorem: given a tournament T, we can decide in poly-time if $\overrightarrow{\omega}(T) \geq 3$, or $\overrightarrow{\omega}(T) \leq 10^{10}$

Lemma: If $\overrightarrow{\omega}(T) \leq 2$ and $N_{\vec{C_3}}(xy) \geq 3$, then $y \prec x$ in every $\overrightarrow{\omega}$ -ordering.

COLOURING 2-COLOURABLE TOURNAMENTS [Klingelhoefer and Newman, 2023]: we can decide in polytime if, given a tournament $T: \overrightarrow{\chi}(T) \geq 3$, or $\overrightarrow{\chi}(T) \leq 10$

Arc local to global Theorem [Klingelhoefer and Newman, 2023] If G is an oriented graph such that $\alpha(G) \leq \alpha$, and $N_{\vec{C_3}}(xy) \leq k$, then $\overrightarrow{\chi}(G) \leq f(\alpha, k)$.

Some more open questions

Conjecture: The class of tournaments with twinwidth at most k is $\overrightarrow{\chi}$ -bounded.

Conjecture (Large $\overrightarrow{\omega}$ implies a $\overrightarrow{\omega}$ -cluster)

There exists two functions f and ℓ such that, for every integer k, every tournament T with $\overrightarrow{\omega}(T) \geq f(k)$ contains a subtournament X with $|X| \leq \ell(k)$ and $\overrightarrow{\omega}(X) \geq k$.

Conjecture: There exists a function g such that, if $\overrightarrow{\omega}(N^+(v)) \leq t$ for every vertex v, then $\overrightarrow{\omega}(T) \leq g(t)$.

Conjecture: for every *n*-vertex tournament T, $\overrightarrow{\omega}(T) = O(\log(n))$

THANK YOU FOR YOUR ATTENTION