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The chromatic number

Colouring: adjacent vertices receive distinct colours.

χ = 3χ = 5 χ = 3

χ(G ) = min{k | G can be coloured with k colours}

Deciding if χ(G ) ≤ k is NP-hard if k ≥ 3.
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A General question

What does it mean to have large chromatic number?

Which substructures must appear if χ is large enough?
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where Forb(F) = {G : ∀H ∈ F , H is not a induced subgraph of G}
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A General question

Why does a graph have large chromatic number?
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A General question

Why does a graph have large chromatic number?

Must it contain a large clique?

NO: There are triangle-free graphs with arbitrarily large χ

N(x)

Independent

Forb({C3}) has unbounded χ
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A General question

Why does a graph have large chromatic number?

Must it contain a short cycle?
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A General question

Why does a graph have large chromatic number?

Must it contain a short cycle?

NO: Erdős proved there exist graphs with arbitrarily large χ and arbitrarily

large girth (shortest cycle length)

Tree

Ball(x,k/2)

Forb({C3,C4, . . . ,Ck}) has unbounded χ
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Clique number versus chromatic number

Question: Why does a graph have large chromatic number?

Answer in some classes: because it has a large clique

(but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C is χ-bounded if there exists a function f such that:

for every G ∈ C, χ(G ) ≤ f (ω(G )).

Perfect graphs: χ-bounded by the function f (x) = x .

Gyárfás-Sumner Conjecture

Let F be a forest. Forbind (F ) is χ-bounded.
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Gyárfás-Sumner Conjecture

Let F be a forest. Forbind (F ) is χ-bounded.

5



Clique number versus chromatic number

Question: Why does a graph have large chromatic number?

Answer in some classes: because it has a large clique

(but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C is χ-bounded if there exists a function f such that:

for every G ∈ C, χ(G ) ≤ f (ω(G )).

Perfect graphs: χ-bounded by the function f (x) = x .
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Colouring digraphs

• Colouring a digraph D: no monochromatic (induced) directed cycle.

−→χ (D) = min{k | D can be coloured with k colours}

−→χ = 2

−→χ = 3
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Dichromatic number generalises chromatic number

G : a graph
←→
G : the digraph obtained by replacing each edge of G by a digon

Theorem: χ(G ) = −→χ (
←→
G ).

G
←→
G

Complexity : Deciding if −→χ ≤ k is NP-hard whenever k ≥ 2.
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Directed/Oriented graphs with Large −→χ ?

For digraphs, consider symmetric cliques
←→
Kk :

For oriented graphs (no
←→
K2)?

Does any oriented complete graph (tournaments) work?

NO because transitive tournaments: −→χ (TTk) = 1

TT5
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Oriented graphs with Large −→χ ?

A recursive construction with −→χ (Sk) = k

S2S1
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Oriented Graphs with Large −→χ ?

A recursive construction with −→χ (Sk) = k

S2 S3

Sk+1 = ∆(1, Sk, Sk)

Sk Sk

(all arcs from left to right)

S1
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What is the clique number of a digraph?

We would like that, for every graph G and every digraph D:

ω(G ) = −→ω (
←→
G ) and −→ω (D) ≤ −→χ (D)

First attempt:

−→ω (D) = size of a maximum symmetric clique in D.

But for every oriented graph G , −→ω (G ) = 1, which is sad.

Second attempt:

−→ω (D) = size for a maximum transitive tournament of D.

Interesting, but does not satisfy −→ω (D) ≤ −→χ (D).
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Backedge graph

Let D be a digraph and ≺ a total order on V (D).

Let the backedge graph D≺ be the undirected graph with vertex set V (D) and

edge uv if u ≺ v and vu ∈ A(D).

D
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Let the backedge graph D≺ be the undirected graph with vertex set V (D) and

edge uv if u ≺ v and vu ∈ A(D).

For every ≺:
−→χ (D) ≤ χ(D≺)

Moreover, there exists ≺ such that χ(D≺) ≤ −→χ (D).

Hence:
−→χ (D) = min

{
χ(D≺) : ≺ is a total order of V (D)

}
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Clique number of digraphs

So we have a new definition of the dichromatic number:

−→χ (D) = min
{
χ(D≺) : ≺ is a total order of V (D)

}

This leads to a natural definition of the clique number of a digraph:

−→ω (D) = min
{
ω(D≺) : ≺ is a total order on V (D)

}

We clearly have:

−→ω (
←→
G ) = ω(G ) (because for every ≺,

←→
G ≺ = G ), and

−→ω (D) ≤ −→χ (D).
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Tournaments with arbitrarily large clique number

Tournaments can have large dichromatic number. Remember Sk

S2 S3

Sk+1 = ∆(1, Sk, Sk)

Sk Sk

(all arcs from left to right)

S1

Question

Can we find tournaments with arbitrarily large clique number?
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Tournaments with arbitrarily large clique number

Let S̃1 = TT1 and inductively, for n ≥ 1, let S̃n = ∆(S̃n−1, S̃n−1, S̃n−1).

S̃2 S̃3

S̃k+1

S̃k S̃k

(all arcs from left to right)

S̃1

S̃k

Lemma

For any integer n, −→ω (S̃n) ≥ n.
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A useful inequality

Theorem (Nguyen, Scott, Seymour, 2023)

For every tournament T and every ordering ≺ of V (T ).

χ(T≺)

ω(T≺)
≤ −→χ (T ) ≤ χ(T≺)
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≤ −→χ (T ) ≤ χ(T≺)

x1 x2 x3 x4 x5

Consider one color class
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A useful inequality

Theorem (Nguyen, Scott, Seymour, 2023)

For every tournament T and every ordering ≺ of V (T ).

χ(T≺)

ω(T≺)
≤ −→χ (T ) ≤ χ(T≺)

x3 x2 x5 x4 x1

0112 2

... ordered by ≺

It gives a colouring with at most ω(T≺) colors

colour with with ”max length back path”

Repeat for the −→χ (T ) color classes
17



−→χ -bounded class of tournaments

A class of tournaments T is −→χ -bounded if there exists a function f such that,

for every T ∈ T ,
−→χ (T ) ≤ f (−→ω (T ))

18



Substitution

Theorem (Folklore)

If C is χ-bounded, then so is Csubst

Csubst : class obtained by repeated substitution operations :
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Substitution

Theorem (Folklore)

If C is χ-bounded, then so is Csubst

Csubst : class obtained by repeated substitution operations :

Example : C = {K1,K2}

Csubst=cliques

K2K1
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Substitution

Theorem (Folklore)

If C is χ-bounded, then so is Csubst

Csubst : class obtained by repeated substitution operations :

Example : C = {K1,K2,K2} K2 K2

Csubst=cographs or

(P4-free)

K1
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Substitution

Theorem

If T is −→χ -bounded , so is T subst

Corollary
−→ω ((Sk)k∈N) is unbounded.

(and we have −→ω (Sk) ≥ log5(k))

Conjecture

Let D be a class of digraphs. If D is −→χ -bounded, then so is Dsubst .

Theorem (Chudnovsky, Penev, Scott, Trotignon, 2013)

If a class of graphs C is polynomially χ-bounded, then so is Csubst .

Question: Is it true that if T is polynomially −→χ -bounded, then so is T subst?
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Substitution

Theorem

If T is −→χ -bounded , so is T subst

Example : C = {K1,
−→
K2,
−→
C3}

Csubst = All subgraphs of S̃k S̃2 S̃k+1

S̃k S̃k

S̃1

S̃k

K1
−→
K2

−→
C3
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Classes of tournaments defined by forbidding a single tournament

Given a tournament H , Forb(H) is the class of tournaments T such that T

does not contain H as a subtournament.

Question

For which tournament H there exists a function fH such that :

T ∈ Forb(H)⇒ −→χ (T ) ≤ f (−→ω (T ))

We say that such that H are −→χ -binding.

21



Heroes

The most trivial case of χ-bounding function is a constant function.

Question

For which tournament H there exists a number cH such that

T ∈ Forb(H)⇒ −→χ (T ) ≤ cH

Such tournaments are called heroes.

Theorem (Berger Choromanski, Chudnovsky, Fox, Loebl, Scott,

Seymour and Thomassé, 2013)

A tournament H is a hero if and only if:

H = K1.

H = (H1 ⇒ H2)

H = ∆(1,TTk ,H1) or H = ∆(1,H ,TTk), where k ≥ 1 and H1 is a hero.

∆(1, TTk, H)

HTTk
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A detour : Gentlemen

Hero

A tournament H is a hero if there exists a number cH such that

T ∈ Forb(H)⇒ −→χ (T ) ≤ cH

Let us define the analogue for −→ω :

Gentleman

A tournament H is a gentleman if there exists a number cH such that

T ∈ Forb(H)⇒ −→ω (T ) ≤ cH

Of course, all heroes are gentlemen since −→ω ≤ −→χ

23



Gentlemen and heroes are the same

Theorem

Heroes and gentlemen are the same.

Proof:

We want to prove Gentlemen ⇒ Hero (the converse is obvious)

Take a minimal counter-example H .

Consider the sequence of tournaments S1, S2, S3, . . . .

We proved that they have arbitrarily large −→ω , so must contain H

So H is of the form ∆(1,A,B) (because H must be strong by minimality)

Nguyen, Scott and Seymour proved S3 = ∆(1, C⃗3, C⃗3) is not a gentlemen,

so H does not contain S3

So one of A or B is a transitive tournament and the other is a gentlemen

and thus a hero by induction

So H is a hero
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−→χ -bounding tournaments

Recall that we want to characterize those :

A tournament H is −→χ -bounding if there exists a function fH such that :

T ∈ Forb(H)⇒ −→χ (T ) ≤ f (−→ω (T ))

25



−→χ -bounding tournaments - A necessary condition

Theorem

H is −→χ -bounding ⇒ H has an ordering ≺ such that H≺ is a forest.

Proof :

Let H be a tournament such that no backedge graph of H is a forest.

Let C be a the class of (undirected) graph with girth at least |V (H)|+ 1.

Let T [C] be the class of tournament admitting a graph of C as a backedge

graph.
We claim that T [C] is H-free

Let T ∈ T [C]. So there is ≺ such that T≺ ∈ C, i.e. T≺ has girth |V (H)|+ 1.

Hence, for every X ⊆ T such that |X | = |V (H)|, T≺[X ] is a forest, and thus

distinct from H.

Observe that every T ∈ T [C] has −→ω (T ) ≤ 2.

Moreover, by a celebrated theorem of Erdős, graph in C can have

arbitrarily large chromatic number.

But it can be proved that χ(G≺) big and ω(G≺) small implies −→χ small.

So T [C] is not −→χ -bounded.
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arbitrarily large chromatic number.

But it can be proved that χ(G≺) big and ω(G≺) small implies −→χ small.

So T [C] is not −→χ -bounded.

26



−→χ -bounding tournaments - A necessary condition

Theorem

H is −→χ -bounding ⇒ H has an ordering ≺ such that H≺ is a forest.

Proof :

Let H be a tournament such that no backedge graph of H is a forest.

Let C be a the class of (undirected) graph with girth at least |V (H)|+ 1.

Let T [C] be the class of tournament admitting a graph of C as a backedge

graph.
We claim that T [C] is H-free

Let T ∈ T [C]. So there is ≺ such that T≺ ∈ C, i.e. T≺ has girth |V (H)|+ 1.

Hence, for every X ⊆ T such that |X | = |V (H)|, T≺[X ] is a forest, and thus

distinct from H.

Observe that every T ∈ T [C] has −→ω (T ) ≤ 2.

Moreover, by a celebrated theorem of Erdős, graph in C can have
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Gyárfás-Sumner Conjecture for tournaments ?

Conjecture

Let H be a tournament. Forb(H) is −→χ -bounded if and only if H has an

ordering ≺ for which H≺ is a forest.

Recall that:

Gyárfás-Sumner Conjecture, 1981

Let H be a graph. Forb(H) is χ-bounded if and only if H is a forest.

We proved:

the only if part (previous slide)

it is enough to prove it for trees instead of forests,

If H1 and H2 are −→χ -binding, then so is H1 ⇒ H2,

It holds for H = T [P⃗k ].

T [ ~P5]
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Conjecture

Let H be a tournament. Forb(H) is −→χ -bounded if and only if H has an

ordering ≺ for which H≺ is a forest.

Recall that:

Gyárfás-Sumner Conjecture, 1981

Let H be a graph. Forb(H) is χ-bounded if and only if H is a forest.

But it does not work for the rotating tournament on 5 vertices!

T [ ~C5]
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Closure by complete join

Theorem

If H1 and H2 are −→χ -binding, then so is H1 ⇒ H2.

We need the following very nice ”local to global” result :

Theorem (Le, Harutyunyan, Thomassé and Wu, 2017)

There exists a function λ such that, if for every vertex v), −→χ (T [N+(v)]) ≤ t,

then −→χ (T ) ≤ λ(t).
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Closure by complete join

Theorem

If H1 and H2 are −→χ -binding, then so is H1 ⇒ H2.

Proof.

Let H = H1 ⇒ H2. We prove the result by induction on k = −→ω

There exists g(k) such that every H-free tournament of clique number at

most k has −→χ at most g(k)

Let T be a H-free tournament of clique number k + 1.

Let ≺ be an −→ω -ordering of T .

Say the arc uv is heavy if −→χ (T [N(uv)]) ≥ 2g(k) + 1, and light otherwise.

If uv is a heavy arc, then v ≺ u

For every u,

min(−→χ (T [N−(u)]),−→χ (T [N+(u)]) ≤ f (k + 1) + g(k) + 2hg(k).

V (D) can be partitionned into two sets of bounded dichromatic number
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Complexity

Question

what is the complexity of deciding if a tournament T has −→ω (T ) ≤ k?

For k = 1 decide if acyclic : easy

For any k ≥ 3, NP-hard !

For k = 2 ?

We have an approximation result :

Theorem: given a tournament T , we can decide in poly-time if −→ω (T ) ≥ 3,

or −→ω (T ) ≤ 1010

Lemma: If −→ω (T ) ≤ 2 and NC⃗3
(xy) ≥ 3, then y ≺ x in every −→ω -ordering.

Colouring 2-colourable tournaments [Klingelhoefer and Newman,

2023]: we can decide in polytime if, given a tournament T : −→χ (T ) ≥ 3, or
−→χ (T ) ≤ 10

Arc local to global Theorem [Klingelhoefer and Newman, 2023] If G is an

oriented graph such that α(G ) ≤ α, and NC⃗3
(xy) ≤ k , then −→χ (G ) ≤ f (α, k).
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Some more open questions

Conjecture: The class of tournaments with twinwidth at most k is
−→χ -bounded.

Conjecture (Large −→ω implies a −→ω -cluster)

There exists two functions f and ℓ such that, for every integer k , every

tournament T with −→ω (T ) ≥ f (k) contains a subtournament X with

|X | ≤ ℓ(k) and −→ω (X ) ≥ k .

Conjecture: There exists a function g such that, if −→ω (N+(v)) ≤ t for every

vertex v , then −→ω (T ) ≤ g(t).

Conjecture: for every n-vertex tournament T , −→ω (T ) = O(log(n))

Thank You For Your Attention
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