Chromatic number and Clique number of tournaments

Guillaume Aubian - Charles University

joint work with

Pierre Aboulker - ENS Pierre Charbit - IRIF - Université Paris-Cité Raul Lopes - LIRMM

February 16, 2024

The chromatic number

Colouring: adjacent vertices receive distinct colours.

 $\chi(G) = \min\{k \mid G \text{ can be coloured with } k \text{ colours}\}$

The chromatic number

Colouring: adjacent vertices receive distinct colours.

 $\chi(G) = \min\{k \mid G \text{ can be coloured with } k \text{ colours}\}$

Deciding if $\chi(G) \leq k$ is NP-hard if $k \geq 3$.

Which substructures must appear if χ is large enough?

Which substructures must appear if χ is large enough?

Equivalently, which families \mathcal{F} are such that $Forb(\mathcal{F})$ has bounded χ ? where $Forb(\mathcal{F}) = \{G : \forall H \in \mathcal{F}, H \text{ is not a induced subgraph of } G\}$

Which substructures must appear if χ is large enough?

Which **finite** families \mathcal{F} are such that $Forb(\mathcal{F})$ has bounded χ ? where $Forb(\mathcal{F}) = \{G : \forall H \in \mathcal{F}, H \text{ is not a induced subgraph of } G\}$

Because it contains a large clique.

Must it contain a large clique?

Must it contain a large clique?

NO: There are triangle-free graphs with arbitrarily large χ

Forb({ C_3 }) has unbounded χ

Must it contain a short cycle?

Must it contain a short cycle?

NO: Erdős proved there exist graphs with arbitrarily large χ and arbitrarily large girth (shortest cycle length)

 $Forb(\{C_3, C_4, \ldots, C_k\})$ has unbounded χ

Answer in some classes: because it has a large clique

(but there exist triangle-free graphs with arbitrarily large chromatic number).

Answer in some classes: because it has a large clique (but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C is χ -bounded if there exists a function f such that:

for every $G \in C$, $\chi(G) \leq f(\omega(G))$.

Answer in some classes: because it has a large clique (but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C is χ -bounded if there exists a function f such that:

for every $G \in C$, $\chi(G) \leq f(\omega(G))$.

Perfect graphs: χ -bounded by the function f(x) = x.

Answer in some classes: because it has a large clique (but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C is χ -bounded if there exists a function f such that:

for every $G \in C$, $\chi(G) \leq f(\omega(G))$.

Perfect graphs: χ -bounded by the function f(x) = x.

Gyárfás-Sumner Conjecture

Let F be a forest. For $b_{ind}(F)$ is χ -bounded.

• Colouring a digraph *D*: no monochromatic (induced) directed cycle.

 $\overrightarrow{\chi}(D) = \min\{k \mid D \text{ can be coloured with } k \text{ colours}\}$

G: a graph

 \overleftrightarrow{G} : the digraph obtained by replacing each edge of G by a digon

Theorem: $\chi(G) = \overrightarrow{\chi}(\overleftarrow{G}).$

Complexity : Deciding if $\overrightarrow{\chi} \leq k$ is NP-hard whenever $k \geq 2$.

Directed/Oriented graphs with Large $\overrightarrow{\chi}$?

For digraphs, consider symmetric cliques $\overleftrightarrow{K_k}$:

Directed/Oriented graphs with Large $\vec{\chi}$?

For digraphs, consider symmetric cliques $\overleftarrow{K_k}$:

For oriented graphs (no $\overleftarrow{K_2}$)?

Does any oriented complete graph (tournaments) work?

Directed/Oriented graphs with Large $\overrightarrow{\chi}$?

For digraphs, consider symmetric cliques $\overleftarrow{\mathcal{K}_k}$:

For oriented graphs (no $\overleftrightarrow{K_2}$)?

Does any oriented complete graph (tournaments) work?

NO because transitive tournaments: $\overrightarrow{\chi}(TT_k) = 1$

Oriented graphs with Large $\overrightarrow{\chi}$?

A recursive construction with $\overrightarrow{\chi}(S_k) = k$

Oriented graphs with Large $\overrightarrow{\chi}$?

A recursive construction with $\overrightarrow{\chi}(S_k) = k$

A recursive construction with $\overrightarrow{\chi}(S_k) = k$

What is the clique number of a digraph?

We would like that, for every graph G and every digraph D:

$$\omega(G) = \overrightarrow{\omega}(\overleftrightarrow{G}) \text{ and } \overrightarrow{\omega}(D) \leq \overrightarrow{\chi}(D)$$

We would like that, for every graph G and every digraph D:

$$\omega(G) = \overrightarrow{\omega}(\overleftarrow{G}) \text{ and } \overrightarrow{\omega}(D) \leq \overrightarrow{\chi}(D)$$

First attempt:

 $\overrightarrow{\omega}(D) =$ size of a maximum symmetric clique in D. But for every oriented graph G, $\overrightarrow{\omega}(G) = 1$, which is sad. We would like that, for every graph G and every digraph D:

$$\omega(G) = \overrightarrow{\omega}(\overleftarrow{G}) \text{ and } \overrightarrow{\omega}(D) \leq \overrightarrow{\chi}(D)$$

First attempt:

 $\overrightarrow{\omega}(D) =$ size of a maximum symmetric clique in D. But for every oriented graph G, $\overrightarrow{\omega}(G) = 1$, which is sad.

Second attempt:

 $\overrightarrow{\omega}(D) =$ size for a maximum transitive tournament of D. Interesting, but does not satisfy $\overrightarrow{\omega}(D) \leq \overrightarrow{\chi}(D)$. Let D be a digraph and \prec a total order on V(D).

Let the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

Let D be a digraph and \prec a total order on V(D).

Let the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

Let D be a digraph and \prec a total order on V(D). Let the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

Let *D* be a digraph and \prec a total order on V(D). Let the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

Let D be a digraph and \prec a total order on V(D).

Let the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

For every \prec :

 $\overrightarrow{\chi}(D) \leq \chi(D^{\prec})$

Moreover, there exists \prec such that $\chi(D^{\prec}) \leq \overrightarrow{\chi}(D)$.

Let D be a digraph and \prec a total order on V(D).

Let the backedge graph D^{\prec} be the undirected graph with vertex set V(D) and edge uv if $u \prec v$ and $vu \in A(D)$.

For every \prec :

$$\overrightarrow{\chi}(D) \leq \chi(D^{\prec})$$

Moreover, there exists \prec such that $\chi(D^{\prec}) \leq \overrightarrow{\chi}(D)$. Hence:

 $\overrightarrow{\chi}(D) = \min \{\chi(D^{\prec}) : \prec \text{ is a total order of } V(D)\}$

So we have a new definition of the dichromatic number:

 $\overrightarrow{\chi}(D) = \min \{\chi(D^{\prec}) : \prec \text{ is a total order of } V(D)\}$

This leads to a natural definition of the clique number of a digraph:

 $\overrightarrow{\omega}(D) = \min \left\{ \omega(D^{\prec}) : \prec \text{ is a total order on } V(D) \right\}$
So we have a new definition of the dichromatic number:

 $\overrightarrow{\chi}(D) = \min \{\chi(D^{\prec}) : \prec \text{ is a total order of } V(D)\}$

This leads to a natural definition of the clique number of a digraph:

 $\overrightarrow{\omega}(D) = \min \left\{ \omega(D^{\prec}) : \prec \text{ is a total order on } V(D) \right\}$

We clearly have:

• $\overrightarrow{\omega}(\overleftrightarrow{G}) = \omega(G)$ (because for every \prec , $\overleftrightarrow{G}^{\prec} = G$), and

• $\overrightarrow{\omega}(D) \leq \overrightarrow{\chi}(D).$

Tournaments can have large dichromatic number. Remember S_k

Tournaments can have large dichromatic number. Remember S_k

Question

Can we find tournaments with arbitrarily large clique number?

Tournaments with arbitrarily large clique number

Let $\tilde{S}_1 = TT_1$ and inductively, for $n \ge 1$, let $\tilde{S}_n = \Delta(\tilde{S}_{n-1}, \tilde{S}_{n-1}, \tilde{S}_{n-1})$.

Lemma

For any integer n, $\vec{\omega}(\tilde{S}_n) \geq n$.

For every tournament T and every ordering \prec of V(T).

$$rac{\chi(T^{\prec})}{\omega(T^{\prec})} \leq \overrightarrow{\chi}(T) \leq \chi(T^{\prec})$$

For every tournament T and every ordering \prec of V(T).

$$rac{\chi(T^{\prec})}{\omega(T^{\prec})} \quad \leq \quad \overrightarrow{\chi}(T) \quad \leq \quad \chi(T^{\prec})$$

For every tournament T and every ordering \prec of V(T).

$$rac{\chi(T^{\prec})}{\omega(T^{\prec})} \leq \overrightarrow{\chi}(T) \leq \chi(T^{\prec})$$

For every tournament T and every ordering \prec of V(T).

$$rac{\chi(T^{\prec})}{\omega(T^{\prec})} \leq \overrightarrow{\chi}(T) \leq \chi(T^{\prec})$$

colour with with "max length back path"

For every tournament T and every ordering \prec of V(T).

$$rac{\chi(T^{\prec})}{\omega(T^{\prec})} \leq \overrightarrow{\chi}(T) \leq \chi(T^{\prec})$$

colour with with "max length back path" It gives a colouring with at most $\omega(T^{\prec})$ colors Repeat for the $\overrightarrow{\chi}(T)$ color classes A class of tournaments \mathcal{T} is $\overrightarrow{\chi}$ -bounded if there exists a function f such that, for every $\mathcal{T} \in \mathcal{T}$, $\overrightarrow{\chi}(\mathcal{T}) \leq f(\overrightarrow{\omega}(\mathcal{T}))$

If \mathcal{C} is χ -bounded, then so is $\mathcal{C}^{\text{subst}}$

If \mathcal{C} is χ -bounded, then so is $\mathcal{C}^{\text{subst}}$

If \mathcal{C} is χ -bounded, then so is $\mathcal{C}^{\text{subst}}$

If \mathcal{C} is χ -bounded, then so is $\mathcal{C}^{\text{subst}}$

If C is χ -bounded, then so is C^{subst}

If C is χ -bounded, then so is C^{subst}

If \mathcal{T} is $\overrightarrow{\chi}$ -bounded , so is $\mathcal{T}^{\textit{subst}}$

Substitution

Theorem If \mathcal{T} is $\overrightarrow{\chi}$ -bounded, so is \mathcal{T}^{subst} Example : $\mathcal{C} = \{K_1, \overrightarrow{K_2}, \overrightarrow{C_3}\}$ K_1 $\overrightarrow{K_2}$

 $\overrightarrow{C_3}$

Substitution

Theorem

If \mathcal{T} is $\overrightarrow{\chi}$ -bounded , so is $\mathcal{T}^{\textit{subst}}$

Corollary

 $\overrightarrow{\omega}((S_k)_{k\in\mathbb{N}})$ is unbounded. (and we have $\overrightarrow{\omega}(S_k) \ge \log_5(k)$)

If \mathcal{T} is $\overrightarrow{\chi}$ -bounded , so is $\mathcal{T}^{\textit{subst}}$

Corollary

 $\overrightarrow{\omega}((S_k)_{k\in\mathbb{N}})$ is unbounded. (and we have $\overrightarrow{\omega}(S_k) \ge \log_5(k)$)

Conjecture

Let \mathcal{D} be a class of digraphs. If \mathcal{D} is $\overrightarrow{\chi}$ -bounded, then so is \mathcal{D}^{subst} .

If \mathcal{T} is $\overrightarrow{\chi}$ -bounded , so is $\mathcal{T}^{\textit{subst}}$

Corollary

 $\overrightarrow{\omega}((S_k)_{k\in\mathbb{N}})$ is unbounded. (and we have $\overrightarrow{\omega}(S_k) \ge \log_5(k)$)

Conjecture

Let \mathcal{D} be a class of digraphs. If \mathcal{D} is $\overrightarrow{\chi}$ -bounded, then so is \mathcal{D}^{subst} .

Theorem (Chudnovsky, Penev, Scott, Trotignon, 2013)

If a class of graphs C is polynomially χ -bounded, then so is C^{subst} .

If \mathcal{T} is $\overrightarrow{\chi}$ -bounded , so is $\mathcal{T}^{\textit{subst}}$

Corollary

 $\overrightarrow{\omega}((S_k)_{k\in\mathbb{N}})$ is unbounded. (and we have $\overrightarrow{\omega}(S_k) \ge \log_5(k)$)

Conjecture

Let \mathcal{D} be a class of digraphs. If \mathcal{D} is $\overrightarrow{\chi}$ -bounded, then so is \mathcal{D}^{subst} .

Theorem (Chudnovsky, Penev, Scott, Trotignon, 2013)

If a class of graphs C is polynomially χ -bounded, then so is C^{subst} .

Question: Is it true that if \mathcal{T} is polynomially $\overrightarrow{\chi}$ -bounded, then so is \mathcal{T}^{subst} ?

Given a tournament H, Forb(H) is the class of tournaments T such that T does not contain H as a subtournament.

Question

For which tournament H there exists a function f_H such that :

$$T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq f(\overrightarrow{\omega}(T))$$

We say that such that *H* are $\overrightarrow{\chi}$ -binding.

The most trivial case of χ -bounding function is a constant function.

Heroes

The most trivial case of χ -bounding function is a constant function.

Question

For which tournament H there exists a number c_H such that

$$T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq c_H$$

Heroes

The most trivial case of χ -bounding function is a constant function.

Question

For which tournament H there exists a number c_H such that

$$T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq c_H$$

Such tournaments are called heroes.

The most trivial case of χ -bounding function is a constant function.

Question

For which tournament H there exists a number c_H such that

$$T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq c_H$$

Such tournaments are called heroes.

Theorem (Berger Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé, 2013)

A tournament H is a hero if and only if:

- $H = K_1$.
- $H = (H_1 \Rightarrow H_2)$
- $H = \Delta(1, TT_k, H_1)$ or $H = \Delta(1, H, TT_k)$, where $k \ge 1$ and H_1 is a hero.

Hero

A tournament H is a hero if there exists a number c_H such that

$$T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq c_H$$

Let us define the analogue for $\overrightarrow{\omega}$:

Gentleman

A tournament H is a gentleman if there exists a number c_H such that

$$T \in Forb(H) \Rightarrow \overrightarrow{\omega}(T) \leq c_H$$

Of course, all heroes are gentlemen since $\overrightarrow{\omega} \leq \overrightarrow{\chi}$

Heroes and gentlemen are the same.

- We want to prove Gentlemen \Rightarrow Hero (the converse is obvious)
- Take a minimal counter-example H.
- Consider the sequence of tournaments S_1, S_2, S_3, \ldots
- \bullet We proved that they have arbitrarily large $\overrightarrow{\omega},$ so must contain H
- So H is of the form $\Delta(1, A, B)$ (because H must be strong by minimality)
- Nguyen, Scott and Seymour proved $S_3 = \Delta(1, \vec{C}_3, \vec{C}_3)$ is not a gentlemen, so H does not contain S_3
- So one of A or B is a transitive tournament and the other is a gentlemen and thus a hero by induction
- So H is a hero

Recall that we want to characterize those :

A tournament *H* is $\overrightarrow{\chi}$ -bounding if there exists a function f_H such that : $T \in Forb(H) \Rightarrow \overrightarrow{\chi}(T) \leq f(\overrightarrow{\omega}(T))$

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow *H* has an ordering \prec such that H^{\prec} is a forest.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow *H* has an ordering \prec such that H^{\prec} is a forest.

Proof :

• Let H be a tournament such that no backedge graph of H is a forest.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow *H* has an ordering \prec such that H^{\prec} is a forest.

- Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow *H* has an ordering \prec such that H^{\prec} is a forest.

- Let H be a tournament such that no backedge graph of H is a forest.
- Let $\mathcal C$ be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow *H* has an ordering \prec such that H^{\prec} is a forest.

- Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is *H*-free

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow *H* has an ordering \prec such that H^{\prec} is a forest.

- Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is *H*-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.
$\overrightarrow{\chi}$ -bounding tournaments - A necessary condition

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow *H* has an ordering \prec such that H^{\prec} is a forest.

- Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is *H*-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.
 - Hence, for every X ⊆ T such that |X| = |V(H)|, T[¬][X] is a forest, and thus distinct from H.

$\overrightarrow{\chi}$ -bounding tournaments - A necessary condition

Theorem

H is $\overrightarrow{\chi}$ -bounding \Rightarrow *H* has an ordering \prec such that H^{\prec} is a forest.

- Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is *H*-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.
 - Hence, for every X ⊆ T such that |X| = |V(H)|, T ≺ [X] is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\overrightarrow{\omega}(T) \leq 2$.

H is $\overrightarrow{\chi}$ -bounding \Rightarrow *H* has an ordering \prec such that H^{\prec} is a forest.

- Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is *H*-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.
 - Hence, for every X ⊆ T such that |X| = |V(H)|, T[¬][X] is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\overrightarrow{\omega}(T) \leq 2$.
- Moreover, by a celebrated theorem of Erdős, graph in C can have arbitrarily large chromatic number.

H is $\overrightarrow{\chi}$ -bounding \Rightarrow *H* has an ordering \prec such that H^{\prec} is a forest.

- Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is *H*-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.
 - Hence, for every X ⊆ T such that |X| = |V(H)|, T ≺ [X] is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\overrightarrow{\omega}(T) \leq 2$.
- Moreover, by a celebrated theorem of Erdős, graph in C can have arbitrarily large chromatic number.
- But it can be proved that $\chi(G^{\prec})$ big and $\omega(G^{\prec})$ small implies $\overrightarrow{\chi}$ small.

H is $\overrightarrow{\chi}$ -bounding \Rightarrow *H* has an ordering \prec such that H^{\prec} is a forest.

- Let H be a tournament such that no backedge graph of H is a forest.
- Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
- Let $\mathcal{T}[\mathcal{C}]$ be the class of tournament admitting a graph of \mathcal{C} as a backedge graph.
- We claim that $\mathcal{T}[\mathcal{C}]$ is *H*-free
 - Let $T \in \mathcal{T}[\mathcal{C}]$. So there is \prec such that $T^{\prec} \in \mathcal{C}$, i.e. T^{\prec} has girth |V(H)| + 1.
 - Hence, for every X ⊆ T such that |X| = |V(H)|, T ≺ [X] is a forest, and thus distinct from H.
- Observe that every $T \in \mathcal{T}[\mathcal{C}]$ has $\overrightarrow{\omega}(T) \leq 2$.
- Moreover, by a celebrated theorem of Erdős, graph in C can have arbitrarily large chromatic number.
- But it can be proved that $\chi(G^{\prec})$ big and $\omega(G^{\prec})$ small implies $\overrightarrow{\chi}$ small.
- So $\mathcal{T}[\mathcal{C}]$ is not $\overrightarrow{\chi}$ -bounded.

Conjecture

Let *H* be a tournament. *Forb*(*H*) is $\overrightarrow{\chi}$ -bounded if and only if *H* has an ordering \prec for which H^{\prec} is a forest.

Conjecture

Let *H* be a tournament. *Forb*(*H*) is $\overrightarrow{\chi}$ -bounded if and only if *H* has an ordering \prec for which H^{\prec} is a forest.

Recall that:

Gyárfás-Sumner Conjecture, 1981

Let *H* be a graph. Forb(H) is χ -bounded if and only if *H* is a forest.

Conjecture

Let *H* be a tournament. *Forb*(*H*) is $\overrightarrow{\chi}$ -bounded if and only if *H* has an ordering \prec for which H^{\prec} is a forest.

Recall that:

Gyárfás-Sumner Conjecture, 1981

Let *H* be a graph. Forb(H) is χ -bounded if and only if *H* is a forest.

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so is $H_1 \Rightarrow H_2$.

We need the following very nice "local to global" result :

Theorem (Le, Harutyunyan, Thomassé and Wu, 2017)

There exists a function λ such that, if for every vertex v), $\overrightarrow{\chi}(T[N^+(v)]) \leq t$, then $\overrightarrow{\chi}(T) \leq \lambda(t)$.

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so is $H_1 \Rightarrow H_2$.

Proof.

• Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so is $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- There exists g(k) such that every H-free tournament of clique number at most k has x at most g(k)

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so is $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- Let T be a H-free tournament of clique number k + 1.

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so is $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- Let T be a H-free tournament of clique number k + 1.
- Let \prec be an $\overrightarrow{\omega}$ -ordering of T.

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so is $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- Let T be a H-free tournament of clique number k + 1.
- Let \prec be an $\overrightarrow{\omega}$ -ordering of T.
- Say the arc uv is heavy if $\overrightarrow{\chi}(T[N(uv)]) \ge 2g(k) + 1$, and light otherwise.

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so is $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- Let T be a H-free tournament of clique number k + 1.
- Let \prec be an $\overrightarrow{\omega}$ -ordering of T.
- Say the arc uv is heavy if $\overrightarrow{\chi}(T[N(uv)]) \ge 2g(k) + 1$, and light otherwise.
- If uv is a heavy arc, then $v \prec u$

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so is $H_1 \Rightarrow H_2$.

Proof.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- Let T be a H-free tournament of clique number k + 1.
- Let \prec be an $\overrightarrow{\omega}$ -ordering of T.
- Say the arc uv is heavy if $\overrightarrow{\chi}(T[N(uv)]) \ge 2g(k) + 1$, and light otherwise.
- If uv is a heavy arc, then $v \prec u$

• For every u, $\min(\overrightarrow{\chi}(T[N^{-}(u)]), \overrightarrow{\chi}(T[N^{+}(u)]) \leq f(k+1) + g(k) + 2hg(k).$

Theorem

If H_1 and H_2 are $\overrightarrow{\chi}$ -binding, then so is $H_1 \Rightarrow H_2$.

- Let $H = H_1 \Rightarrow H_2$. We prove the result by induction on $k = \overrightarrow{\omega}$
- Let T be a H-free tournament of clique number k + 1.
- Let \prec be an $\overrightarrow{\omega}$ -ordering of T.
- Say the arc uv is heavy if $\overrightarrow{\chi}(T[N(uv)]) \ge 2g(k) + 1$, and light otherwise.
- If uv is a heavy arc, then $v \prec u$
- For every u, $\min(\overrightarrow{\chi}(T[N^{-}(u)]), \overrightarrow{\chi}(T[N^{+}(u)]) \leq f(k+1) + g(k) + 2hg(k).$
- V(D) can be partitionned into two sets of bounded dichromatic number

Question

what is the complexity of deciding if a tournament T has $\overrightarrow{\omega}(T) \leq k$?

Question

what is the complexity of deciding if a tournament T has $\overrightarrow{\omega}(T) \leq k$?

- For k = 1 decide if acyclic : easy
- For any $k \geq 3$, NP-hard !
- For k = 2 ?

Question

what is the complexity of deciding if a tournament T has $\vec{\omega}(T) \leq k$?

- For k = 1 decide if acyclic : easy
- For any $k \geq 3$, NP-hard !
- For k = 2 ?

We have an approximation result :

Theorem: given a tournament T, we can decide in poly-time if $\vec{\omega}(T) \ge 3$, or $\vec{\omega}(T) \le 10^{10}$

Question

what is the complexity of deciding if a tournament T has $\vec{\omega}(T) \leq k$?

- For k = 1 decide if acyclic : easy
- For any $k \geq 3$, NP-hard !
- For k = 2 ?

We have an approximation result :

Theorem: given a tournament T, we can decide in poly-time if $\vec{\omega}(T) \ge 3$, or $\vec{\omega}(T) \le 10^{10}$

Lemma: If $\overrightarrow{\omega}(T) \leq 2$ and $N_{\vec{C}_3}(xy) \geq 3$, then $y \prec x$ in every $\overrightarrow{\omega}$ -ordering.

Question

what is the complexity of deciding if a tournament T has $\vec{\omega}(T) \leq k$?

- For k = 1 decide if acyclic : easy
- For any $k \geq 3$, NP-hard !
- For k = 2 ?

We have an approximation result :

Theorem: given a tournament T, we can decide in poly-time if $\vec{\omega}(T) \ge 3$, or $\vec{\omega}(T) \le 10^{10}$

Lemma: If $\overrightarrow{\omega}(T) \leq 2$ and $N_{\vec{C}_3}(xy) \geq 3$, then $y \prec x$ in every $\overrightarrow{\omega}$ -ordering.

COLOURING 2-COLOURABLE TOURNAMENTS [Klingelhoefer and Newman, 2023]: we can decide in polytime if, given a tournament $T: \vec{\chi}(T) \ge 3$, or $\vec{\chi}(T) \le 10$

Question

what is the complexity of deciding if a tournament T has $\vec{\omega}(T) \leq k$?

- For k = 1 decide if acyclic : easy
- For any $k \geq 3$, NP-hard !
- For k = 2 ?

We have an approximation result :

Theorem: given a tournament T, we can decide in poly-time if $\vec{\omega}(T) \ge 3$, or $\vec{\omega}(T) \le 10^{10}$

Lemma: If $\overrightarrow{\omega}(T) \leq 2$ and $N_{\vec{C}_3}(xy) \geq 3$, then $y \prec x$ in every $\overrightarrow{\omega}$ -ordering.

COLOURING 2-COLOURABLE TOURNAMENTS [Klingelhoefer and Newman, 2023]: we can decide in polytime if, given a tournament $T: \vec{\chi}(T) \ge 3$, or $\vec{\chi}(T) \le 10$

Arc local to global Theorem [Klingelhoefer and Newman, 2023] If G is an oriented graph such that $\alpha(G) \leq \alpha$, and $N_{\vec{C}_3}(xy) \leq k$, then $\overrightarrow{\chi}(G) \leq f(\alpha, k)$.

Conjecture: The class of tournaments with twinwidth at most k is $\overrightarrow{\chi}$ -bounded.

Conjecture (Large $\overrightarrow{\omega}$ implies a $\overrightarrow{\omega}$ -cluster) There exists two functions f and ℓ such that, for every integer k, every tournament T with $\overrightarrow{\omega}(T) \ge f(k)$ contains a subtournament X with $|X| \le \ell(k)$ and $\overrightarrow{\omega}(X) \ge k$.

Conjecture: There exists a function g such that, if $\vec{\omega}(N^+(v)) \leq t$ for every vertex v, then $\vec{\omega}(T) \leq g(t)$.

Conjecture: for every *n*-vertex tournament T, $\overrightarrow{\omega}(T) = O(log(n))$ THANK YOU FOR YOUR ATTENTION