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Colouring: adjacent vertices receive distinct colours.

X(G) = min{k | G can be coloured with k colours}

Deciding if X(G) < k is NP-hard if k > 3.
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Which substructures must appear if x is large enough?

Which finite families F are such that Forb(F) has bounded x?
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A General question

Why does a graph have large chromatic number?

Must it contain a short cycle?

NO: Erdds proved there exist graphs with arbitrarily large x and arbitrarily
large girth (shortest cycle length)

Ball(x,k/2)

Forb({Gs, Cy, ..., Cx}) has unbounded y
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Clique number versus chromatic number

Question: Why does a graph have large chromatic number?

Answer in some classes: because it has a large clique
(but there exist triangle-free graphs with arbitrarily large chromatic number).

A class of graphs C is y-bounded if there exists a function f such that:
for every G € C, x(G) < f(w(G)).
Perfect graphs: x-bounded by the function f(x) = x.

Gyarfas-Sumner Conjecture
Let F be a forest. Forbjnq (F) is x-bounded.



Colouring

e Colouring a digraph D: no monochromatic (induced) directed cycle.

X (D) = min{k | D can be coloured with k colours}

o ¥

X =3

X =2



Dichromatic number generalises chromatic number

G: a graph
?: the digraph obtained by replacing each edge of G by a digon

Theorem: \(G) = ¥ (G).

20N

Complexity : Deciding if ? < k is NP-hard whenever k > 2.
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Directed/Oriented graphs with Large Y'?

For digraphs, consider symmetric cliques ?Z:

For oriented graphs (no 2)7
Does any oriented complete graph (tournaments) work?

NO because transitive tournaments: ¥ (TTx) = 1

TT; é ;.
8
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Oriented Graphs with Large \'?

A recursive construction with X (Si) = k

W s A /\

(all arcs from left to right)

Sk+1:A(1>Sk75k)

11



What is the clique number of a digraph?

We would like that, for every graph G and every digraph D:

w(G)=w(G) and T(D) < X(D)
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We would like that, for every graph G and every digraph D:
—
w(G)=(G) and (D)< X(D)
First attempt:

W (D) = size of a maximum symmetric clique in D.

But for every oriented graph G, ﬁ(G) = 1, which is sad.
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What is the clique number of a digraph?

We would like that, for every graph G and every digraph D:

w(G)=w(G) and T(D)< F(D

First attempt:

W (D) = size of a maximum symmetric clique in D.

But for every oriented graph G, ﬁ(G) = 1, which is sad.

Second attempt:

ﬁ(D) = size for a maximum transitive tournament of D.

Interesting, but does not satisfy ﬁ ) < 7

12



Backedge graph

Let D be a digraph and < a total order on V(D).
Let the backedge graph D~ be the undirected graph with vertex set V(D) and
edge uv if u < v and vu € A(D).
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Let the backedge graph D~ be the undirected graph with vertex set V(D) and
edge uv if u < v and vu € A(D).
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Backedge graph

Let D be a digraph and < a total order on V(D).
Let the backedge graph D~ be the undirected graph with vertex set V(D) and
edge uv if u < v and vu € A(D).

For every <:

X(D) < x(D7)
Moreover, there exists < such that x(D=<) < (D).
Hence:

X (D) = min {x(D~): < is a total order of V(D)}

13



Clique number of digraphs

So we have a new definition of the dichromatic number:

Y (D) = min {x(D¥): < is a total order of V(D)}

This leads to a natural definition of the clique number of a digraph:

W(D) = min {w(D¥): < is a total order on V(D)}
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Clique number of digraphs

So we have a new definition of the dichromatic number:

Y (D) = min {x(D¥): < is a total order of V(D)}

This leads to a natural definition of the clique number of a digraph:

W(D) = min {w(D¥): < is a total order on V(D)}

We clearly have:
° ﬁ(?) = w(G) (because for every <, G~ = G), and
° W(D) <X (D).

14



arbitrarily large clique number

Tournaments can have large dichromatic number. Remember S;

o en S

(all arcs from left to right)

Ski1 = A(1, Sk, Sk') \
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Tournaments with arbitrarily large clique number

Tournaments can have large dichromatic number. Remember S;

o en S

(all arcs from left to right)

Ski1 = A(1, Sk, Sk') \

Question
Can we find tournaments with arbitrarily large clique number?

15



Tournaments with arbitrarily large clique number

Let S; = TT; and inductively, for n > 1, let 5, = A(gn,l, Sn_1, 5,7,1).

Lemma

For any integer n, W(S,) > n.

16



A useful inequality

Theorem (Nguyen, Scott, Seymour, 2023)

For every tournament T and every ordering < of V(T).

X < M = M7

17
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A useful inequality

Theorem (Nguyen, Scott, Seymour, 2023)

For every tournament T and every ordering < of V(T).

e < XM o< AT

.. ordered by <

colour with with "max length back path”
It gives a colouring with at most w(7"~) colors

Repeat for the X (T') color classes



Y—bounded class of tournaments

A class of tournaments 7 is "\ -bounded if there exists a function f such that,
forevery T € T,
X(T) < f(W(T))

18



Substitution

Theorem (Folklore)
If C is x-bounded, then so is C*“bst
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Substitution

Theorem (Folklore)

If C is x-bounded, then so is C*“bst

Csubst + class obtained by repeated substitution operations :
K.
Example : C = {K;, K2} K; 2

CsWst—cliques
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Substitution

Theorem (Folklore)

If C is x-bounded, then so is C*“bst

Csubst + class obtained by repeated substitution operations :
e K K K
Example : C = {K;, Ka, K. 1 2 2
Xamp:e { 152, 2} Y o——o0 (Pooooc @

e o—0RNO=0
(Py-free)

19



Substitution

Theorem
If T is X -bounded , so is T subst
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Substitution

Theorem
g = : subst
If T is X -bounded , so is T
K Ks o
Example : C = {Kl’]-(—;c-g} ® .—2.. AG’

subst __ 5 = & I
C = All subgraphs of Sp & . Sy ﬁ Skt1 i
e
[ o \

20



Substitution

Theorem
If T is X -bounded , so is T subst

Corollary

W ((Sk)ken) is unbounded.
(and we have W(Sy) > logs(k))
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(and we have W(Sy) > logs(k))

Conjecture
Let D be a class of digraphs. If D is Y—bounded, then so is Dbst.
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20



Substitution

Theorem
If T is X -bounded , so is T subst

Corollary

W ((Sk)ken) is unbounded.
(and we have W(Sy) > logs(k))

Conjecture
Let D be a class of digraphs. If D is Y—bounded, then so is Dbst.

Theorem (Chudnovsky, Penev, Scott, Trotignon, 2013)
If a class of graphs C is polynomially x-bounded, then so is C“bt.

Question: Is it true that if 7 is polynomially Y—bounded, then so is 7 subst?
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Classes of tournaments defined by forbidding a single tournament

Given a tournament H, Forb(H) is the class of tournaments T such that T
does not contain H as a subtournament.

Question
For which tournament H there exists a function fy such that :

T € Forb(H) = Y(T) < f(W(T))

We say that such that H are Y-binding.

21



The most trivial case of xy-bounding function is a constant function.
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The most trivial case of xy-bounding function is a constant function.

Question
For which tournament H there exists a number cy such that

T € Forb(H) = X (T) < ¢y

Such tournaments are called heroes.
Theorem (Berger Choromanski, Chudnovsky, Fox, Loebl, Scott,
Seymour and Thomassé, 2013)
A tournament H is a hero if and only if:
e H=K;j.
e H=(H = H,)
@ H=A(1,TTy,H1) or H= A(1,H, TTy), where k > 1 and Hy is a hero.

AT, H) /‘\

.|
e
22



A detour : Gentlemen

Hero
A tournament H is a hero if there exists a number cy such that

T € Forb(H) = X (T) < ¢y

Let us define the analogue for & :

Gentleman
A tournament H is a gentleman if there exists a number ¢y such that

T € Forb(H) = &(T) < ey

Of course, all heroes are gentlemen since W< 7

23



Gentlemen and heroes are the same

Theorem
Heroes and gentlemen are the same.

Proof:

@ We want to prove Gentlemen = Hero (the converse is obvious)

@ Take a minimal counter-example H.

@ Consider the sequence of tournaments 51,5, Ss, .. ..

@ We proved that they have arbitrarily large W, so must contain H

@ So H is of the form A(1, A, B) (because H must be strong by minimality)

@ Nguyen, Scott and Seymour proved S3 = A(1, 53, 53) is not a gentlemen,
so H does not contain S3

@ So one of A or B is a transitive tournament and the other is a gentlemen
and thus a hero by induction

@ So H is a hero

24



Y—bounding tournaments

Recall that we want to characterize those :

A tournament H is '-bounding if there exists a function fy such that :

T € Forb(H) = X (T) < f(@(T))

25



X -bounding tournaments - A necessary condition

Theorem
H is X -bounding = H has an ordering < such that H= is a forest.
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Theorem
H is X -bounding = H has an ordering < such that H= is a forest.

Proof :

@ Let H be a tournament such that no backedge graph of H is a forest.
@ Let C be a the class of (undirected) graph with girth at least |V(H)| + 1.
@ Let T[C] be the class of tournament admitting a graph of C as a backedge
graph.
@ We claim that T[C] is H-free
o Let T € T[C]. So there is < such that T~ € C, i.e. T~ has girth |V(H)| + 1.

@ Hence, for every X C T such that | X| = |V(H)|, T=[X] is a forest, and thus
distinct from H.
@ Observe that every T € T[C] has W (T) < 2.
@ Moreover, by a celebrated theorem of Erdds, graph in C can have
arbitrarily large chromatic number.
@ But it can be proved that x(G™) big and w(G™) small implies ¥ small.

@ So T[C] is not ¥ -bounded.
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Gyarfas-Sumner Conjecture for tournaments ?

Conjecture

Let H be a tournament. Forb(H) is Y'-bounded if and only if H has an
ordering < for which H= is a forest.
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Closure by complete join

Theorem
If H; and H, are Y—binding, then so is H; = H,.

We need the following very nice "local to global” result :

Theorem (Le, Harutyunyan, Thomassé and Wu, 2017)

There exists a function \ such that, if for every vertex v), X (T[NT(v)]) < t,
then X (T) < A(t).

28
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Proof.
o Let H= H; = H,. We prove the result by induction on k = «
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If H; and H, are Y-binding, then so is Hy = H,.

Proof.
o Let H= H; = H,. We prove the result by induction on k = «

@ There exists g(k) such that every H-free tournament of clique number at
most k has  at most g(k)

@ Let T be a H-free tournament of clique number k + 1.

@ Let < be an ﬁ-ordering of T.

@ Say the arc uv is heavy if ¥ (T[N(uv)]) > 2g(k) + 1, and light otherwise.
@ If uv is a heavy arc, then v < u

@ For every u,
min(X (TIN=(u)]), X (TINF(0)]) < f(k + 1) + g(k) + 2hg (k).
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Closure by complete join

Theorem
If H; and H, are Y-binding, then so is Hy = H,.

Proof.
o Let H= H; = H,. We prove the result by induction on k = «

@ There exists g(k) such that every H-free tournament of clique number at
most k has  at most g(k)

@ Let T be a H-free tournament of clique number k + 1.

@ Let < be an ﬁ-ordering of T.

@ Say the arc uv is heavy if ¥ (T[N(uv)]) > 2g(k) + 1, and light otherwise.

@ If uv is a heavy arc, then v < u

@ For every u,

min(X (TIN=(u)]), X (TINF(u)]) < F(k + 1) + g(k) + 2hg(k).

@ V(D) can be partitionned into two sets of bounded dichromatic number

O
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Complexity

Question
what is the complexity of deciding if a tournament T has ﬁ(T) < k?
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@ For any k > 3, NP-hard !
@ For k=27
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Complexity

Question
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or W(T) < 1010

Lemma: If &(T) <2 and Ne (xy) = 3, then y < x in every W-ordering.

COLOURING 2-COLOURABLE TOURNAMENTS [Klingelhoefer and Newman,
2023]: we can decide in polytime if, given a tournament T: Y(T) > 3, or
X(T) <10

Arc local to global Theorem [Klingelhoefer and Newman, 2023] If G is an
oriented graph such that a(G) < «, and Ng (xy) < k, then X (G) < f(a, k).
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Some more open questions

Conjecture: The class of tournaments with twinwidth at most k is
Y-bounded.

Conjecture (Large & implies a &-cluster)

There exists two functions f and ¢ such that, for every integer k, every
tournament T with & (T) > f(k) contains a subtournament X with
|X| < £(k) and W(X) > k.

Conjecture: There exists a function g such that, if & (N*(v)) < t for every
vertex v, then W (T) < g(t).

Conjecture: for every n-vertex tournament T, W(T) = O(log(n))

THANK YOU FOR YOUR ATTENTION
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