
Foundations of Software Technology and Theoretical Computer Science (2011) Submission

Regular Set of Representatives for
Time-Constrained MSC Graphs

S. Akshay 1,Blaise Genest 2, Loı̈c H élou ët3,Shaofa Yang 4

1 National University of Singapore

2 CNRS, UMI IPAL joint with NUS and A*STAR/I2R, Singapore.

3 INRIA Rennes, France.

4 SIAT, Chinese Academy of Sciences, China.

ABSTRACT.
Systems involving both time and concurrency are notoriously difficult to analyze. Existing decid-
ability results apply in settings where clocks on different processes cannot be compared or where the
set of timed executions is regular. We prove new decidability results for timed concurrent systems,
requiring neither restriction. We consider the formalism of time-constrained MSC-graphs (TC-MSC
graphs for short) introduced in [1], and study whether the set of timed executions generated by a
TC-MSC graph is empty or not. This emptiness problem is known to be undecidable in general [10].

Our approach for obtaining decidability consists of two steps: (i) find a subset R of representative
timed executions, that is, for which every timed execution of the system has an equivalent, up to
commutation, timed execution in R, and (ii) prove that R is regular. This allows us to solve the
emptiness problem under the assumption that the TC-MSC graph G is well-formed. In particular, a
well-formed TC-MSC graph is prohibited from forcing any basic scenario to take an arbitrarily long
time to complete. Secondly, it is forbidden from enforcing unboundedly many events to occur within
a single unit of time. We argue that these restrictions are indeed practically sensible.

1 Introduction

In a distributed system, several processes interact to implement a collection of global be-

haviors. These processes are often equipped with timing information and protocol specifi-

cations include timing requirements for messages and descriptions of how to recover from

timeouts. Thus, a system designer has to deal with situations where time and concurrency

influence each other. One way to describe these interactions is through scenarios, formalized

using Message Sequence Charts (MSCs) [13]. The timing information is captured by adding

timing constraints between pairs of events, yielding time-constrained MSCs (denoted TC-

MSCs). Further, infinite collections of MSCs are typically described using High-level Mes-

sage Sequence Charts, or more basic forms called MSC-graphs, i.e. directed graphs whose

nodes are labelled by MSCs. MSC-graphs can be easily generalized to time-constrained

MSC graphs (TC-MSC graphs)[10], whose nodes are labelled by TC-MSCs and edges have

additional timing constraints. In this paper, we are interested in obtaining decidability re-

sults for the analysis of TC-MSC graphs.

Obtaining decidability in the presence of both time and concurrency is a challenging

issue. In particular, even the simple question of checking if there exists a timed execution

NOT FOR DISTRIBUTION

2 REGULAR SET OF REPRESENTATIVES

of a TC-MSC graph consistent with all the constraints is undecidable in general [10]. This

is the emptiness problem, which in the case of (sequential) timed automata is known to be

decidable [3]. Extending such decidability results to distributed systems has been done

only in two particular and limited settings. In the first setting, [14, 9] consider clocks that are

local to a process. But then, one cannot specify time taken by a communication (message or

synchronisation). This limitation makes the specification formalism very weak. The second

setting can relate clocks from different processes and specify how long a communication can

or must take [1, 2, 6, 7]. However, these papers restrict the concurrency in a structural way,

for instance considering only locally synchronized (see [15, 4, 12]) MSC-graphs (in [1, 2]) or

only safe Petri Nets (in [6, 7]). The language of the specification is then forced to be regular,

which is a significant restriction in a concurrent setting where even simple behaviors may

not be regular (e.g., the producer-consumer protocol).

In this paper, we propose the first decidability result for timed concurrent systems with

global clocks having a possibly non-regular set of behaviors. More specifically, we tackle the

emptiness problem for TC-MSC graphs (which is undecidable in general [10]) by coming up

with mild restrictions which are practically motivated and yet sufficient to prove decidabil-

ity. Indeed, this is important as the only non trivial way to have an empty language is that

every possible timing of the events conflict with some constraint. Such specification should

then be considered as ill-formed, which has to be reported to the designer.

Our technique to obtain decidability of the emptiness problem is to use a regular set of

representatives. A set of representatives is a subset of executions such that every execution of

the system has an equivalent- up to commutation- execution in this subset. This technique

has been used previously in untimed settings [11, 8] and with the fixed set of existentially

bounded executions [11] as the regular set of representatives. In Section 3, it is formalized as a

general technique on timed languages, and is applied on a new regular set of representatives

called the set of well-behaved timed executions. This is the subset of timed executions where

two events from the same scenario do not occur at dates that are arbitrarily apart from each

other (non drifting), and where there are a limited number of events done in one unit of time

(non Zeno). This demonstrates the versatility of the technique.

We state our main theorems in Section 4: the set of well-behaved timed executions is

regular, and it is a set of representatives under the assumption that the TC-MSC graph is

well-formed. Together, these imply that the emptiness problem is decidable for well-formed

TC-MSC graphs. Intuitively, being well-formed forbids specifications in which (1) events

from the same scenario are forced to occur arbitrarily apart from each other (drifting), which

is undesirable as it goes against the MSC-graph design, and (2) an unbounded number of

events are forced to happen within one unit of time, which is unimplementable.

The proofs of these Theorems are detailed in Section 5. The regularity of the set of well-

behaved executions exploits the fact that if node x appears sufficiently before node y in a

path, then all events of x must occur before any event of y in any well-behaved execution

of this path. Proving representativity for a well-formed TC-MSC graph is non trivial, as

for each execution, one needs to find a representative which is both non drifting and has

a limited number of events per unit of time, while being well-formed guarantees only the

existence of two representatives, one of each kind. Finally, we discuss in Section 6 the sig-

nificance and practicality of our assumptions as well as related work.

S. AKSHAY, B. GENEST, L. HÉLOUËT, S. YANG FSTTCS 2011 3

2 Time-Constrained MSC graphs

We begin by fixing a finite nonempty set of processesP that communicate through messages

via reliable FIFO channels. Let p, q range over P . The communication alphabet is given by

Σ = {p!q, p?q | p 6= q} where the sending action p!q denotes a message sent from process

p to q and the receiving action q?p denotes a message received by process q from p. Let

N denote the set of natural numbers. Further, let I(N) denote the set of open and closed

intervals whose end points are in N, plus the intervals of the form [c, ∞), (c, ∞), where

c ∈ N. We shall use intervals in I(N) to constrain the lower and upper bounds on the

difference of occurrence times of events in a scenario. Note that intervals involving non-

negative rationals can be easily simulated by scaling them to integers. We adopt the basic

definitions from [1].

DEFINITION 1. A time-constrained message sequence chart (TC-MSC) over P and Σ is a

tuple T = (E, (<p)p∈P , λ, µ, δ) where E is a finite nonempty set of events; λ : E → Σ labels
each event with a letter in Σ. The following conditions are satisfied:

• Each <p⊆ Ep × Ep is a total order, where Ep = λ−1({p} × {!, ?} × P). Members of Ep

are termed p-events.
• The message relation µ is a bijection from Esend = λ−1(P × {!} × P) (the sending

events) to Erecv = λ−1(P ×{?} ×P) (the receiving events). For any e, f with µ(e) = f ,
it is the case that for some p, q, we have λ(e) = p!q and λ(f) = q?p. For each p, any

events e, e′ in Ep, satisfies that e <p e′ iff µ(e) <q µ(e′), where µ(e) is a q-event.
• Write < for the transitive closure of (

⋃
p∈P <p)∪ µ. The time constraint labelling func-

tion δ associates an interval in I(N) to each pair of events (e, f) ∈ E × E with e < f .

Abusing notation, we write a TC-MSC more conveniently as (E,<, λ, µ, δ), with the

understanding that < is in fact defined from <p for p ranging over P , and µ. In what

follows, we fix a TC-MSC T = (E,<, λ, µ, δ).

A linearization of T is a sequence σ = a1 . . . aℓ over Σ∗, where ℓ = |E| and such that E can

be enumerated as e1 . . . eℓ with ai = λ(ei), and ei < ej implies i < j for any i, j in {1, . . . , ℓ}.

Note that due to the FIFO condition, the enumeration e1 . . . eℓ is uniquely determined by

a1 . . . aℓ. A TC-MSC T defines a collection of linearizations augmented with occurrence

times such that the relative delay of each pair of causally ordered event falls within the

interval dictated by δ. To avoid confusion, we shall term occurrence times as dates:

DEFINITION 2. Let T be as fixed above. A timed execution w of T is a sequence (a1, d1) . . . (aℓ, dℓ),
where a1 . . . aℓ is a linearization of T, each date di is a non-negative real for i = 1, . . . , ℓ, and
d1 ≤ . . . ≤ dℓ. Let e1 · · · eℓ be the enumeration corresponding to the linearization a1 . . . aℓ.
Then ei < ej implies dj − di is in the interval δ(ei, ej).

To describe infinite collections of TC-MSCs, one uses the formalism of TC-MSC graphs.

DEFINITION 3. Let T be a finite nonempty set of TC-MSCs. A TC-MSC graph over T is a
tuple G = (N,−→, nini, Nfin, Λ, ∆) where N is a finite set of nodes, −→⊆ N × N a transition
relation, nini ∈ N the initial node, Nfin ⊆ N the subset of final nodes, and Λ : N → T labels

each node with a TC-MSC from T . Further, the mapping ∆ associates each transition (n, n′)
in −→ with a P -indexed family of intervals in I(N).

4 REGULAR SET OF REPRESENTATIVES

n1

⇒
p q

[0, 3]

n2

p r

n3

q r

([0, 2],⊥,⊥) (⊥,(2, 3],⊥)

T1
p q r

[0, 3][0, 2]

T2
p q r

[0, 3]

[0, 3]

[0, 3]

[0, 2]

(2, 3]

(2, 3]

Figure 1: A TC-MSC graph G1 and two TC-MSCs it generates

For each p, we write ∆p(n, n′) for the p-th component of ∆(n, n′). The interval ∆p(n, n′)
specifies the range of relative delay on p when moving from n to n′. We write ⊥ for the

interval [0, ∞). Figure 1 displays a TC-MSC graph whose nodes consist of n1, n2, n3. The

initial node n1 is indicated by an incoming arrow. There is only one final node, n3. In

node n1, the relative delay between the sending event of p and the receiving event of q is

constrained to lie within [0, 3]. The ([0, 2],⊥,⊥) on transition (n1, n2) indicates ∆p(n1, n2) =
[0, 2], ∆q(n1, n2) = ⊥, ∆r(n1, n2) = ⊥. It asserts that the relative delay between the last event

of p of n1 and the first event of p of n2 should be in [0, 2]. To reduce clutter in the figures, we

shall omit all time constraints of ⊥ inside a basic scenario.

We fix a TC-MSC graph G = (N,−→, nini, Nfin, Λ, ∆). We write n −→ n′ for (n, n′) ∈−→.

We shall speak interchangeably of a node n and its associated TC-MSC Λ(n). A TC-MSC

graph defines a collection of TC-MSCs arising from concatenating TC-MSCs in paths of G.

We first define this mechanism of concatenating adjacent TC-MSCs in G. For a TC-MSC

T = (E,<, λ, µ, δ), we call the <p-minimal event in Ep the first p-event, and the <p-maximal

event in Ep the last p-event. Simply put, for a transition (n, n′), the concatenation of n with

n′ is the TC-MSC resulting from placing n′ after n, and for each process p, take ∆p(n, n′) to

be the time constraint between the last p-event of n and the first p-event of n′.

DEFINITION 4. Let G be as fixed above and (n, n′) a transition of G. Let Λ(n) = (E,<

, λ, µ, δ) and Λ(n′) = (E′,<′, λ′, µ′, δ′). The concatenation of Λ(n) and Λ(n′), denoted

Λ(n) ◦Λ(n′), is the TC-MSC (E′′,<′′, λ′′, µ′′, δ′′) detailed as follows. Firstly, E′′ is the disjoint
union of E and E′; λ′′ agrees with λ on events in E, and with λ′ on events in E′. Secondly,
for each p, <′′

p is <p ∪ <′
p ∪Ep × E′

p; µ′′ is the union of µ and µ′. Lastly, for e, f ∈ E′′ with
e <′′ f , δ′′(e, f) is given as follows: (i) if e, f ∈ E, then δ′′(e, f) = δ(e, f); (ii) if e, f ∈ E′, then

δ′′(e, f) = δ′(e, f); (iii) suppose e ∈ E, f ∈ E′. If for some p, e is the last p-event of n and f

the first p-event of n′, δ′′(e, f) = ∆p(n, n′), otherwise, δ(e, f) = ⊥.

Note that as in [1, 10, 2], in the above definition, if either Ep = ∅ or E′
p = ∅, then

∆p(n, n′) is disregarded in Λ(n) ◦ Λ(n′). That is, we can assume without loss of generality

that ∆p = ⊥ for each such p on such a transition (n, n′). Observe that now ◦ is associative.

A path of G is a sequence of nodes ρ = n0 . . . nℓ of G such that each n0 = nini and

ni −→ ni+1 for i = 0, . . . , ℓ− 1. We emphasize that a path always starts with the initial node.

Since ◦ is associative, we can unambiguously define the TC-MSC induced by ρ, denoted Tρ,

to be Λ(n0) ◦ . . . ◦ Λ(nℓ). A path is final if its last node is in Nfin.

S. AKSHAY, B. GENEST, L. HÉLOUËT, S. YANG FSTTCS 2011 5

The TC-MSC language of G is the set of TC-MSCs induced by final paths of G. For a

TC-MSC T, let L(T) denote its set of timed executions. For the TC-MSC graph G, the timed

execution language of G, denoted L(G), is the union of L(Tρ) ranging over final paths ρ of G.

We say that a TC-MSC T (resp. a path ρ) is consistent iff L(T) 6= ∅ (resp. L(Tρ) 6= ∅).

We tackle the emptiness problem of TC-MSC graphs, which can be stated as: given a TC-

MSC graph G, determine whether L(G) is empty. The emptiness of L(G) implies that for

any TC-MSC Tρ induced by a final path ρ of G, no assignment of dates to events in Tρ can

satisfy all the time constraints in Tρ. Thus, such a G with L(G) = ∅ should be considered

ill-specified, and thus it should be checked for. However, it is known [10] that:

PROPOSITION 5. [10] The emptiness problem of TC-MSC graphs is undecidable.

In [1, 2], decidability is obtained for locally-synchronized TC-MSC graphs. This syntac-

tical restriction limits concurrency, and implies that the timed execution language is regular,

which is a severe restriction. Indeed, even simple examples, such as G1 from Figure 1 or the

producer-consumer protocol, do not have regular timed execution languages.

3 Regular Set of Representatives

We advocate a technique of using regular sets of representatives for obtaining decidability of

the emptiness problem of TC-MSC graphs. This is a partial order reduction technique (since

not all timed executions will be considered), which can handle TC-MSC graphswith non-

regular timed execution languages. We begin with the following definition:

DEFINITION 6. Let G be a TC-MSC graph. A subset R of L(G) is called a set of representa-

tives for G if for each consistent final path ρ of G, R ∩ L(Tρ) 6= ∅.

It immediately follows that:

PROPOSITION 7. If R is a set of representatives for G, then L(G) = ∅ iff R = ∅.

Indeed, many timed executions of a TC-MSC graph G are equivalent, in the sense that

they are timed executions of the TC-MSC induced by the same final path of G. To check

for emptiness of L(G), it suffices to consider emptiness of a set R of representatives for G,

instead of L(G) itself. If R turns out to be regular and effective, then the emptiness problem

of TC-MSC graphs can be decided. For example, consider G2 in Figure 2. The language

L(G2) is not regular. However, the set {σ0, σ0σ1, σ0σ1σ2, . . .}, where σi = (p!q, 4i)(q?p, 4i +
1)(s!r, 4i + 2)(r?s, 4i + 3) for all i ∈ N, is a regular set of representatives for G2.

Thus, there are three elements in the technique of regular set of representatives:

1. Choose a subset R of L(G).
2. Show that the chosen subset R is a set of representatives for G.

3. Prove that R is regular.

Till the end of the section, let us fix a TC-MSC graph G = (N,−→, nini, Nfin, Λ, ∆), a

path ρ = n0 . . . nℓ of G, a timed execution w = (a1, d1) . . . (ah, dh) of ρ, and e1, · · · eh the

enumeration of E associated with a1 · · · ah. We start by giving a first set of representatives.

6 REGULAR SET OF REPRESENTATIVES

p q r s

n0

G2

p q

n1

r s

n2

G3

Figure 2: Two TC-MSC graphs G2, G3. Specification G2 is scenario-connected and G3 is not.

DEFINITION 8. Let K be an integer. We say that w is K-drift-bounded if for each 0 ≤ u ≤ ℓ,
and i, j ∈ {1, . . . , h}, if ei, ej are in Λ(nu), then |di − dj| ≤ K.

In other words, w is K-drift-bounded if the difference between the first and the last date

associated with an event of any basic scenario is bounded by K. Interpreting the scenario in

each node of a TC-MSC graph as one phase or one transaction of a distributed protocol, it is

realistic to believe that exectuions of an implemented system are K-drift-bounded.

Now, for a TC-MSC graph G and an integer K, we say that G is K-drift-bounded if for

every consistent path ρ of G, there exists a K-drift-bounded timed execution in L(ρ). We

emphasize that all timed executions of L(ρ) are not required to be K-drift-bounded. Observe

that with the above definitions, G being K-drift bounded implies that the set LK(G) of K-

drift-bounded executions of G is a set of representatives of G. Unfortunately this set may

not be regular. For example, for the TC-MSC graph G2 in Figure 2, LK(G2) is not regular, for

any K, because of timed executions with an unbounded number of events per unit of time.

Formally, for an integer K′, we say that w has at most K′ events per unit of time if for any i, j in

{1, . . . , h}, dj − di ≤ 1 implies j − i < K′.

This phenomenon of having unboundedly many events within one unit of time is

known as Zenoness and occurs commonly in timed specifications. It turns out that by im-

posing the next simple syntactical condition, one can prevent a TC-MSC graph from en-

forcing Zenoness (this is one consequence of Theorem 12 below). We say that a transition

(n, n′) of G is positively constrained if for every p, ∆p(n, n′) is not [0, 0] (but it can be [0, 1),
[3, 3], [2, ∞) . . .). We say that G is positively constrained if every transition of G is positively

constrained. We can now present our regular set of representatives, namely the set LK,K′(G)
of (K, K′)-well-behaved timed executions, defined as follows:

DEFINITION 9. For integers K, K′, we say that w is (K, K′)-well-behaved if w is K-drift-

bounded and has at most K′ events per unit of time.

To get the representativity of LK,K′(G), we need a restriction on the TC-MSC graph:

DEFINITION 10. We say that a TC-MSC graph is K-well-formed if it is K-drift-bounded and
positively constrained.

4 Main results:

We can now state our main results. The first two theorems below hold with one more tech-

nical restriction imposed on TC-MSC graphs. However, the third theorem will establish

decidability of the emptiness problem of TC-MSC graphs even without this technical re-

striction. A transition (n, n′) of G is said to be scenario-connected if there exists a process p,

s.t. both n and n′ have at least one p-event. G is scenario-connected if every transition of G is

scenario-connected. For instance, in Figure 2, G2 is scenario-connected while G3 is not.

S. AKSHAY, B. GENEST, L. HÉLOUËT, S. YANG FSTTCS 2011 7

THEOREM 11. Let K, K′ be integers. If G is scenario-connected, then LK,K′(G) is regular.

Concerning the representativity, we need G to be well-formed.

THEOREM 12. Let K be an integer. If G is K-well-formed and scenario-connected, then
LK,K′(G) is a set of representatives of G, with K′ = 4(|P| + 1)2 · K · M, where M is the
maximal number of events in one node of G.

Theorems 11,12 imply, with effort to lift the scenario-connected assumption:

THEOREM 13. Given a K-well-formed TC-MSC graph G for some integer K, it is decidable
to determine whether L(G) = ∅.

An immediate question is if given a TC-MSC graph G and an integer K, one can ef-

fectively determine whether G is K-well-formed. In fact, it turns out that this question is

decidable. However, this problem is not in the scope of this paper, and its proof, involving

vastly different techniques, will be dealt with in a subsequent paper.

5 Proofs of Representativity, Regularity and Decidability

5.1 Regularity

We prove Theorem 11 by constructing a timed automaton ([3]) A which recognizes LK,K′(G).
In general, to recognize L(G), a timed automaton A needs to generate every linearization of

the TC-MSC induced by every path of G. In linearizing events from the TC-MSC induced

by a path ρ = n0 . . . nz, the discrete state of A keeps track of nodes which have not yet been

(fully) executed, and for each such node memorizes which events have yet to be executed

[15]. To ensure that time constraints are respected when linearizing ρ, A needs to draw

clocks from a fixed pool to keep track of the relative delay between an executed event e and

an event f not yet executed, when e, f are in the same node or when e is the last p-event of

ni and f is the first p-event of ni+1 [1]. In general, this requires memorizing an arbitrarily

large number of events, and it requires an infinite pool of clocks.

However, to recognize LK,K′(G), it suffices to remember a finite number of nodes and

events, which follows from the following crucial property. Notice that bounding the number

of nodes and events also bounds the set of clocks needed [1]. If ρ = n0 . . . nz is the current

path (that is, at least one event of nz has been executed), then the not yet (fully) executed

nodes are in the suffix ny . . . nz of ρ, where z − y is bounded by a fixed constant C depending

only on |P|, K, K′. This property is proved formally in Lemma 14. Once this is established,

the detailed construction of A, which is sketched above, follows precisely [1] (see also [2]).

The main difference is that in [1, 2], the bound C is obtained by restricting the concurrency.

Before stating the lemma, let us fix some notations. Let G, K, K′ be as given in theo-

rem 11. Let CK,K′ = 2 · |P| · (|P| + 1) · K · K′ and ρ = n0 . . . nz be a path of G. Let w =
(a1, d1) . . . (aℓ, dℓ) be a (K, K′)-well-behaved timed execution of ρ. We denote by e1, . . . , eℓ
the enumeration of events of Tρ associated with a1, . . . , aℓ. For all i ≤ ℓ, we define d(ei) = di.

LEMMA 14. Let nx be a node of the path ρ = n0 . . . nz given above, and such that z − x ≥
CK,K′ . Then d(e) < d(f) for all events e of nx and f of nz.

8 REGULAR SET OF REPRESENTATIVES

PROOF. Let Eventsx be the collection of events in the suffix nx . . . nz. Assume that z − x is

sufficiently large. From the fact that w has at most K′ events per unit of time, we first prove

that there exist two events g, g′ in Eventsx such that d(g′) > d(g) + 2C1, for some large C1.

Note that each node of ρ contains at least one event. As z − x is sufficiently large, there are

m ≥ 2K′ × C1 events f1 <p . . . <p fm in Eventsx and on the same process p, for some p ∈ P .

Since w has at most K′ events per unit of time, it follows that d(fm) > d(f1) + 2C1.

Consider the event g built as above, and let ns be the state it is in. We will prove that

d(g) ≥ d(e) − |P| · K (actually this is true for all events g in Eventsx). Since G is scenario-

connected, it follows that for each node nt of ρ, there exists a process pt, an event ft in

node nt and an event gt in node nt+1 such that both ft, gt are on porcess pt. There exists a

subsequence of (ft, gt)0≤t≤z consisting of |P| pairs (f ′i , g′i)i≤|P| s.t. f1 and e are in the same

node, f ′i+1 and g′i are in the same node for each i < |P| and g and g′|P| are in the same node.

To obtain this, we only ensure that f ′i and f ′j are on different processes for all i 6= j.

First, we have f ′i < g′i for each i ≤ |P|, as they are on the same process. Hence d(f ′i) ≤
d(g′i). Also, |d(e)− d(f ′1)| ≤ K since e, f ′1 are in the same node. Similarly, |d(f ′i+1)− d(g′i)| ≤
K for each i ≤ |P|, and |d(g′u) − d(g)| ≤ K. Thus, d(g) ≥ d(e) − (|P| + 1) · K. The same

analysis gives d(f) ≥ d(g′) − (|P| + 1) · K. Taking C1 = (|P| + 1) · K, and recalling that

d(g′) > d(g) + 2C1, we get d(f) > d(e).

5.2 Representativity

Secondly, we prove theorem 12. Let ρ = n0 . . . nz be a consistent path of G. As G is K drift

bounded, there exists a K-drift-bounded timed execution w = (a1, d1) . . . (aℓ, dℓ) of Tρ. We

construct another timed execution w′ = (a1, d′1) . . . (aℓ, d′
ℓ
) from w by suitably modifying

the dates, such that w′ is still an execution of Tρ, is K-drift-bounded, and has at most K′

events per unit of time, for a suitable choice of K′. The key idea in the construction of w′

is to inductively postpone (when needed/possible) the dates of all events of nx · · · nz. By

postponing, we ensure that there will exist some process p such that the difference between

the date of the last p-event of nx−1 and the date of the first p-event of nx is at least 1/2. If it

is already the case, then we do not postpone.

As before, let e1 . . . eℓ be an enumeration of events in Tρ corresponding to a1 . . . aℓ, and

let us write d(e) (resp. d′(e)) for the date di (resp d′i), when e = ei. To construct w′, we first

initialize d′(e) = d(e) for each event e. Next, consider node n1. Let Q 6= ∅ be the collection

of those processes p such that both n0 and n1 have p-events. For each p in Q, let lep(n0)
denote the last p-event of n0 and fep(n1) denote the first p-event of n1.

If for some p ∈ Q, d(fep(n1)) − d(lep(n0)) ≥ 1/2, then for each event e in n1, do not

modify d′(e) (it will not be modified later either). Otherwise, let θmax < 1/2 be the max-

ium of d(fep(n1)) − d(lep(n0)) where p ranges over Q. For each event e in n1 . . . nz, set

d′(e) = d(e) + 1/2 − θmax. We emphasize that when considering node n1, the above proce-

dure postpones dates of events in n1, and dates of events in n2 . . . nz, by the same amount.

Since G is positively constrained, the timed execution resulting from the above procedure is

still in L(Tρ) and is still K-drift-bounded. We inductively carry on the above procedure to

consider each of the nodes n2, . . . , nz. The timed execution w′ is obtained after considering

all the nodes n0, . . . , nz. It follows that w′ is K-drift-bounded and is in L(ρ).

S. AKSHAY, B. GENEST, L. HÉLOUËT, S. YANG FSTTCS 2011 9

It remains to show that w′ has at most K′ events per unit of time, for a sufficiently large

K′. Let M be the maximum number of events in any node of G. It suffices to show that

every pair of events e, f from two nodes n, n′ sufficiently apart in the path (and n appearing

first) satisfies d′(f) > d′(e) + 1, as then events in the same unit of time belong to nodes

sufficiently close, and there are at most (M times the number of nodes) such events. The

proof follows on the exact same lines as the regularity proof above, with the same constant

C1 = (|P| + 1)K. We show that we can find two events g, g′ on nodes between n, n′ with

d′(g′) > d′(g) + 2C1 + 1. The regularity proof showed that fact using the bounded number

of events per unit of time of w. Here, this is what we want to prove, so we rely instead on the

construction of w′ above. If there are more than |P| · (4C1 + 2) nodes between n and n′, then

there is one process p which is in Q for more than 4C1 + 2 transitions. By construction of w′,

on each of these transitions, time elapses by 1/2 on p, and the result follows. Now, we can

apply the results from the regularity proof, to get d′(f) > d′(g′)−C1 and d′(g) > d′(e)−C1,

which gives d′(f) > d′(e) + 1. That is, K′ = |P| · M · (4C1 + 2) is sufficient.

5.3 Decidability

From theorem 11 and 12, one readily concludes:

COROLLARY 15. Let G be a TC-MSC graph as fixed earlier, and K an integer. If G is scenario-
connected, and K-well-formed, then one can effectively determine whether L(G) is empty.

We now lift the scenario-connected restriction, proving Theorem 13. Suppose G is

not scenario-connected. Let NSC denote the set of transitions of G that are not scenario-

connected. Proposition 16 states the crucial observation that for any path ρ = n0 · · · nℓ with

(ni, ni+1) in NSC, the dates of events in ni+1 . . . nℓ are not constrained in any way by the

dates of events in n0 · · · ni. This fact was also used in [10] along the same lines.

PROPOSITION 16. Suppose ρ = n0 · · · nℓ is a path of G.

• If (ni, ni+1) is in NSC where 0 ≤ i < ℓ, then ρ is consistent iff both path n0 · · · ni and
path ni+1 · · · nℓ are consistent.

• Suppose ρ is consistent. If (ni, ni+1), (nj, nj+1) are both in NSC where 0 ≤ i < j < ℓ,
and ni = nj, then the path n0 . . . ninj+1 . . . nℓ is also consistent.

We now decompose G into a finite collection H of TC-MSC graphs, each of which is

scenario-connected. We will decide the non emptiness of L(G) by considering the non

emptiness of L(H) for every H in H, which is decidable by Corollary 15. Let N1 be the

subset of nodes n of G such that (n′, n) ∈ NSC for some node n′ of G. Let N2 be the subset of

nodes n′ of G such that (n′, n) ∈ NSC for some node n of G. For each n ∈ N1 ∪ {nini}, each

n′ ∈ N2 ∪ Nfin, we build the scenario-connected TC-MSC graph Hn,n′ from G as follows. The

set of nodes of Hn,n′ is the same as G. Hn,n′ has n as initial node, and has one single final

node n′. The transitions of Hn,n′ consist of all scenario-connected transitions of G. Let H
be the collection of all such Hn,n′ . For each Hn,n′ in H, we can decide whether L(Hn,n′) is

not empty following Corollary 15. From the first item of Proposition 16, L(G) is not empty

iff there exist a sequence Hn0,n1
, Hn2,n3 , . . ., Hn2ℓ,n2ℓ+1

in H such that n0 = nini, n2ℓ+1 ∈ Nfin,

and for each i ≤ ℓ, L(Hn2i,n2i+1
) is not empty and (n2i+1, n2i+2) is in NSC. We can chose

n0, n2 . . . , n2ℓ to be distinct according to the second item of Proposition 16. In particular, ℓ is

at most the number of nodes of G, and an algorithm follows.

10 REGULAR SET OF REPRESENTATIVES

6 Discussion and Related Work

In this section, we discuss the role of the restrictions we imposed.

6.1 Practical Motivation of Drift-boundedness

Interpreting a node of a TC-MSC graph as specifying communications in one phase or one

transaction of a distributed protocol, it is realistic to expect that in an implementation of the

specification, the scenario labeling the node is performed in a bounded time, that is the dif-

ference between the date of the first and the last event of the scenario is bounded. One may

thus be tempted to impose that all timed executions of the language of a TC-MSC graph are

K-drift-bounded, for some uniform constant K. However, TC-MSC graphs are meant for

high-level abstract description of system behaviour at an early design stage. The designer

should implement flexibility in the TC-MSC graphs to adapt to different implementation

hardware, and this sort of strong restriction is not acceptable. This is the reason why our

K-drift-bounded restriction is existential in nature: we only demand that each path of a

TC-MSC graph contains at least one K-drift-bounded timed execution, which can then be

chosen in the implementation process. Notice that being K-drift-bounded implies to be also

K̂-drift-bounded for K̂ ≥ K, which can then adapt to many different hardware. Conversely,

a TC-MSC graph which is not K-drift-bounded for any K have executions that require un-

bounded delay to finish scenarios, which is then not implementable.

Non regular examples: every TC-MSC graph used as example in this paper is K-drift-

bounded for some small K (K ≤ 3), and its timed execution language is not regular. For

instance, consider G1 from Figure 1. No assumption is made on the speed of r (the constraint

for r is ⊥ in the loop), which may delay message reception for an unbounded amount of

time. Hence, at a given moment, there might be an arbitrary number of messages transiting

from q to r. Note that even if process r is allowed to drift from q, the specification still allows

behaviors in which they send and consume messages at the same pace. Hence unbounded

drifting can occur, but can also be avoided.

Why it is necessary but not sufficient: First, we remark that the undecidability proof

from [10] uses a family of TC-MSC graphs (Gi)i∈N which is not K-drift-bounded for any K.

Second, drift-boundedness is not sufficient to obtain a regular set of representatives. For

instance, the set LK(G2) of representatives for G2 (see Figure 2) is not regular for any K ≥ 0.

Indeed, consider the set of timed executions where every event is executed at time 0. This

set is not regular as the number of messages from p to q and from r to s should be the same.

Also, this set is included in LK(G2). Thus, the untimed projection of LK(G2) and of this set

are equal, and LK(G2) is not regular.

6.2 Practical motivation of positively constrained transitions

Consider a modified version of the TC-MSC graph G2 of Figure 2, denoted G′
2, where con-

straints [0, 0] have been added to all messages and on all processes in the unique transition.

Clearly, this enforces all the events to be done exactly at date 0: for all k, all the timed execu-

tions of the TC-MSC associated with the path ρ = (n0)k of G′
2 have more than k events per

unit of time. Thus, this specification is not implementable as it forces an unbounded num-

S. AKSHAY, B. GENEST, L. HÉLOUËT, S. YANG FSTTCS 2011 11

ber of events to be done in 1 unit of time. Hence, it makes sense to disallow such constraints

[0, 0] by requiring the system to be scenario-connected.

Related Work: The usual notion of strongly non-Zeno timed automaton [5] requires that

there exists a bound K′ such that all timed executions have at most K′ events per unit of

time. This imposes a given pace at which events can be done, which is very restrictive for a

high-level specification. In comparison, positively constrained does not impose a pace and

allows these kinds of executions in general, but implies that there exists at least one well-

behaved execution for each path. For example, taking the positively constrained TC-MSC

graph G2 of Figure 2, it is possible for all the events to happen at date 0.

Why it is not sufficient: Notice that we can slightly change the TC-MSC graph used

in the undecidability proof of [10] to make it positively constrained, hence positively con-

strained alone does not suffice to get decidability, and a restriction such as drift bounded-

ness is required. In fact, in this paper, we have shown that being both K-drift-bounded and

positively constrained is sufficient to get decidability.

6.3 Scenario-connected TC-MSC graphs

The motivation behind the scenario-connected restriction is simple. Theorem 11,12 do not

hold if we remove this restriction. It suffices to consider the TC-MSC graph G3 of Fig-

ure 2 which is not scenario-connected. The timed executions (p!q, 1)(q?p, 2) · · · (p!q, t +
1)(q?p, t + 2)(s!r, t + 3)(r?s, t + 4) · · · (s!r, 2t + 3)(r?s, 2t + 4) is in L1,1(G3) for all date t, and

thus L1,1(G3) is not a regular set. While we can tweak the definition of LK,K′(G) to make it a

regular set of representatives for G, this set is no longer easily defined. On the other hand,

the scenario-connected restriction can be more elegantly lifted directly on Theorem 13.

6.4 Regular Set of Representatives and existential bounds on communications

The method of regular set of representatives has been used in [11, 8] with the fixed set of

existentially bounded executions as representatives. Indeed, if a language has a regular set of

representatives, then it must be existentally B bounded for some B, that is every execution is

equivalent with (is a linearization of the same MSC as) a B bounded execution (an execution

where the number of messages sent and not yet received is at most B). In particular, if G

is well-formed and scenario-connected, LK,K′(G) is existentally-bounded. However, the set

of existentially B bounded linearizations is not regular in general, even for untimed MSC-

graphs. In [11, 8], another restriction on communication is used, namely globally cooperative

MSC-graphs [11], which require (as regularity) an exponential blow up in the size of the

MSC-graph. We have shown the versatility of the technique by proposing a new set of

representatives which refines the set of existentially B bounded executions, and which does

not need globally cooperative MSC-graphs. We believe that this method could be used in

other context than (Timed Constrained) MSC-graphs.

12 REGULAR SET OF REPRESENTATIVES

7 Conclusion

In this paper, we have proved decidability of the language emptiness problem for a subclass

of TC-MSC graphs. This problem was known to be decidable for regular TC-MSC graphs.

The subclass considered in this paper contains non-regular specifications. It is characterized

in terms of bounds on the time a basic scenario takes, and disallows the constraint [0, 0] on

transitions. We believe that these two requirements do not impair implementability, and

meet what designers have in mind when designing a TC-MSC: event execution takes time,

and the specification is split in phases. Several related problems remain to be tackled. Given

a TC-MSC graph G and an integer K, determine whether G is K-drift-bounded. It turns

out that this problem is decidable, but its proof uses very different techniques which will

be dealt with in a forthcoming paper. Also, while drift boundedness is needed to obtain

decidability, we doubt that positively constrained transitions are necessary.

References

[1] S. Akshay, M. Mukund, and K. Narayan Kumar. Checking coverage for infinite collec-

tions of timed scenarios. In CONCUR’07, pages 181–196, 2007.

[2] S. Akshay, P. Gastin, K. Narayan Kumar, and M. Mukund. Model checking time-

constrained scenario-based specifications. In FSTTCS’10, 2010.

[3] R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.

[4] R. Alur and M. Yannakakis. Model checking of message sequence charts. In CON-

CUR’99, volume 1664 of LNCS, pages 114–129, 1999.

[5] E. Asarin, O. Maler, A.Pnueli, and J. Sifakis. Controller synthesis for timed automata.

In IFAC Symposium on System Structure and Control, pages 469–474, 1998.

[6] P. Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldings for networks of timed

automata. In ATVA’06, volume 4218 of LNCS, 2006.

[7] F. Cassez, Th. Chatain, and C. Jard. Symbolic unfoldings for networks of timed au-

tomata. In ATVA’06, volume 4218 of LNCS, pages 307–321, 2006.

[8] Ph. Darondeau, B. Genest, and L. Hélouët. Products of message sequence charts. In

FOSSACS’08, volume 4962 of LNCS, pages 459–474, 2008.

[9] C. Dima and R. Lanotte. Distributed time-asynchronous automata. In ICTAC’07, pages

185–200, 2007.

[10] P. Gastin, K. Narayan Kumar, and M. Mukund. Reachability and boundedness in time-

constrained MSC graphs. Perspectives in Concurrency Theory, 2008.

[11] B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking algo-

rithms for existentially bounded communicating automata. Inf. and Comp., 204(6):920–

956, 2006.

[12] J. G. Henriksen, M. Mukund, K. N. Kumar, M. Sohoni, and P. S. Thiagarajan. A theory

of regular MSC languages. Inf. and Comp., 202(1):1–38, 2005.

[13] ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99), 1999.

[14] D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics approach to the clock

explosion problem of timed automata. TCS, 345(1):27–59, 2005.

[15] A. Muscholl and D. Peled. Message sequence graphs and decision problems on

mazurkiewicz traces. In MFCS’99, volume 1672 of LNCS, pages 81–91, 1999.

